請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37061完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 沈麗娟(Li-Jiuan Shen) | |
| dc.contributor.author | Shan-Erh Lin | en |
| dc.contributor.author | 林珊而 | zh_TW |
| dc.date.accessioned | 2021-06-13T15:18:34Z | - |
| dc.date.available | 2011-08-08 | |
| dc.date.copyright | 2008-08-08 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-24 | |
| dc.identifier.citation | [1] Arzumanian V, Stankevicius E, Laukeviciene A, Kevelaitis E. Mechanisms of nitric oxide synthesis and action in cells. Medicina (Kaunas, Lithuania) 2003;39:535-41.
[2] Garthwaite J, Charles SL, Chess-Williams R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 1988;336:385-8. [3] Knowles RG, Palacios M, Palmer RM, Moncada S. Formation of nitric oxide from L-arginine in the central nervous system: a transduction mechanism for stimulation of the soluble guanylate cyclase. Proceedings of the National Academy of Sciences of the United States of America 1989;86:5159-62. [4] Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 1988;333:664-6. [5] Hibbs JB, Jr., Taintor RR, Vavrin Z, Rachlin EM. Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochemical and biophysical research communications 1988;157:87-94. [6] Stuehr DJ, Nathan CF. Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. The Journal of experimental medicine 1989;169:1543-55. [7] Griffith OW, Stuehr DJ. Nitric oxide synthases: properties and catalytic mechanism. Annual review of physiology 1995;57:707-36. [8] Stuehr DJ. Mammalian nitric oxide synthases. Biochimica et biophysica acta 1999;1411:217-30. [9] Masters BS, McMillan K, Sheta EA, Nishimura JS, Roman LJ, Martasek P. Neuronal nitric oxide synthase, a modular enzyme formed by convergent evolution: structure studies of a cysteine thiolate-liganded heme protein that hydroxylates L-arginine to produce NO. as a cellular signal. Faseb J 1996;10:552-8. [10] Hemmens B, Mayer B. Enzymology of nitric oxide synthases. Methods in molecular biology (Clifton, NJ 1998;100:1-32. [11] Stuehr DJ. Structure-function aspects in the nitric oxide synthases. Annual review of pharmacology and toxicology 1997;37:339-59. [12] Lamas S, Marsden PA, Li GK, Tempst P, Michel T. Endothelial nitric oxide synthase: molecular cloning and characterization of a distinct constitutive enzyme isoform. Proceedings of the National Academy of Sciences of the United States of America 1992;89:6348-52. [13] Pou S, Pou WS, Bredt DS, Snyder SH, Rosen GM. Generation of superoxide by purified brain nitric oxide synthase. The Journal of biological chemistry 1992;267:24173-6. [14] Vasquez-Vivar J, Kalyanaraman B, Martasek P, Hogg N, Masters BS, Karoui H, et al. Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proceedings of the National Academy of Sciences of the United States of America 1998;95:9220-5. [15] Xia Y, Roman LJ, Masters BS, Zweier JL. Inducible nitric-oxide synthase generates superoxide from the reductase domain. The Journal of biological chemistry 1998;273:22635-9. [16] Xia Y, Tsai AL, Berka V, Zweier JL. Superoxide generation from endothelial nitric-oxide synthase. A Ca2+/calmodulin-dependent and tetrahydrobiopterin regulatory process. J Biol Chem 1998;273:25804-8. [17] Miller RT, Martasek P, Roman LJ, Nishimura JS, Masters BS. Involvement of the reductase domain of neuronal nitric oxide synthase in superoxide anion production. Biochemistry 1997;36:15277-84. [18] Yoneyama H, Yamamoto A, Kosaka H. Neuronal nitric oxide synthase generates superoxide from the oxygenase domain. The Biochemical journal 2001;360:247-53. [19] Sherwood L. Human Physiology - From cells to systems. 4th edition. [20] Knowles RG, Moncada S. Nitric oxide synthases in mammals. The Biochemical journal 1994;298 ( Pt 2):249-58. [21] Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J 1992;6:3051-64. [22] Jaffrey SR, Snyder SH. Nitric oxide: a neural messenger. Annu Rev Cell Dev Biol 1995;11:417-40. [23] Moncada S, Erusalimsky JD. Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nat Rev Mol Cell Biol 2002;3:214-20. [24] Schlossmann J, Hofmann F. cGMP-dependent protein kinases in drug discovery. Drug Discov Today 2005;10:627-34. [25] Schweizer M, Richter C. Nitric oxide potently and reversibly deenergizes mitochondria at low oxygen tension. Biochemical and biophysical research communications 1994;204:169-75. [26] Brown GC, Cooper CE. Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett 1994;356:295-8. [27] Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proceedings of the National Academy of Sciences of the United States of America 1990;87:1620-4. [28] Ischiropoulos H, Zhu L, Chen J, Tsai M, Martin JC, Smith CD, et al. Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch Biochem Biophys 1992;298:431-7. [29] Beckman JS, Carson M, Smith CD, Koppenol WH. ALS, SOD and peroxynitrite. Nature 1993;364:584. [30] Beckman JS, Estevez AG, Crow JP, Barbeito L. Superoxide dismutase and the death of motoneurons in ALS. Trends Neurosci 2001;24:S15-20. [31] Kuhn DM, Geddes TJ. Reduced nicotinamide nucleotides prevent nitration of tyrosine hydroxylase by peroxynitrite. Brain research 2002;933:85-9. [32] Przedborski S, Jackson-Lewis V, Yokoyama R, Shibata T, Dawson VL, Dawson TM. Role of neuronal nitric oxide in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity. Proceedings of the National Academy of Sciences of the United States of America 1996;93:4565-71. [33] Gatto EM, Riobo NA, Carreras MC, Chernavsky A, Rubio A, Satz ML, et al. Overexpression of neutrophil neuronal nitric oxide synthase in Parkinson's disease. Nitric Oxide 2000;4:534-9. [34] Bao J, Sharp AH, Wagster MV, Becher M, Schilling G, Ross CA, et al. Expansion of polyglutamine repeat in huntingtin leads to abnormal protein interactions involving calmodulin. Proceedings of the National Academy of Sciences of the United States of America 1996;93:5037-42. [35] Butterfield DA, Howard BJ, LaFontaine MA. Brain oxidative stress in animal models of accelerated aging and the age-related neurodegenerative disorders, Alzheimer's disease and Huntington's disease. Curr Med Chem 2001;8:815-28. [36] Chen M, Ona VO, Li M, Ferrante RJ, Fink KB, Zhu S, et al. Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat Med 2000;6:797-801. [37] Tran MH, Yamada K, Nakajima A, Mizuno M, He J, Kamei H, et al. Tyrosine nitration of a synaptic protein synaptophysin contributes to amyloid beta-peptide-induced cholinergic dysfunction. Mol Psychiatry 2003;8:407-12. [38] Hyman BT, Marzloff K, Wenniger JJ, Dawson TM, Bredt DS, Snyder SH. Relative sparing of nitric oxide synthase-containing neurons in the hippocampal formation in Alzheimer's disease. Ann Neurol 1992;32:818-20. [39] Simic G, Lucassen PJ, Krsnik Z, Kruslin B, Kostovic I, Winblad B, et al. nNOS expression in reactive astrocytes correlates with increased cell death related DNA damage in the hippocampus and entorhinal cortex in Alzheimer's disease. Experimental neurology 2000;165:12-26. [40] Thorns V, Hansen L, Masliah E. nNOS expressing neurons in the entorhinal cortex and hippocampus are affected in patients with Alzheimer's disease. Experimental neurology 1998;150:14-20. [41] Patten BM, Harati Y, Acosta L, Jung SS, Felmus MT. Free amino acid levels in amyotrophic lateral sclerosis. Ann Neurol 1978;3:305-9. [42] Rothstein JD, Tsai G, Kuncl RW, Clawson L, Cornblath DR, Drachman DB, et al. Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann Neurol 1990;28:18-25. [43] Lin CL, Bristol LA, Jin L, Dykes-Hoberg M, Crawford T, Clawson L, et al. Aberrant RNA processing in a neurodegenerative disease: the cause for absent EAAT2, a glutamate transporter, in amyotrophic lateral sclerosis. Neuron 1998;20:589-602. [44] Boll MC, Alcaraz-Zubeldia M, Montes S, Murillo-Bonilla L, Rios C. Raised nitrate concentration and low SOD activity in the CSF of sporadic ALS patients. Neurochem Res 2003;28:699-703. [45] Sarchielli P, Orlacchio A, Vicinanza F, Pelliccioli GP, Tognoloni M, Saccardi C, et al. Cytokine secretion and nitric oxide production by mononuclear cells of patients with multiple sclerosis. J Neuroimmunol 1997;80:76-86. [46] Broholm H, Andersen B, Wanscher B, Frederiksen JL, Rubin I, Pakkenberg B, et al. Nitric oxide synthase expression and enzymatic activity in multiple sclerosis. Acta Neurol Scand 2004;109:261-9. [47] Bagasra O, Michaels FH, Zheng YM, Bobroski LE, Spitsin SV, Fu ZF, et al. Activation of the inducible form of nitric oxide synthase in the brains of patients with multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America 1995;92:12041-5. [48] Giovannoni G, Heales SJ, Silver NC, O'Riordan J, Miller RF, Land JM, et al. Raised serum nitrate and nitrite levels in patients with multiple sclerosis. J Neurol Sci 1997;145:77-81. [49] Giovannoni G, Silver NC, O'Riordan J, Miller RF, Heales SJ, Land JM, et al. Increased urinary nitric oxide metabolites in patients with multiple sclerosis correlates with early and relapsing disease. Mult Scler 1999;5:335-41. [50] Yamashita T, Ando Y, Obayashi K, Uchino M, Ando M. Changes in nitrite and nitrate (NO2-/NO3-) levels in cerebrospinal fluid of patients with multiple sclerosis. J Neurol Sci 1997;153:32-4. [51] Moro MA, Cardenas A, Hurtado O, Leza JC, Lizasoain I. Role of nitric oxide after brain ischaemia. Cell Calcium 2004;36:265-75. [52] Iadecola C, Zhang F, Casey R, Nagayama M, Ross ME. Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. J Neurosci 1997;17:9157-64. [53] Perez-Asensio FJ, Hurtado O, Burguete MC, Moro MA, Salom JB, Lizasoain I, et al. Inhibition of iNOS activity by 1400W decreases glutamate release and ameliorates stroke outcome after experimental ischemia. Neurobiology of disease 2005;18:375-84. [54] Cockroft KM, Meistrell M, 3rd, Zimmerman GA, Risucci D, Bloom O, Cerami A, et al. Cerebroprotective effects of aminoguanidine in a rodent model of stroke. Stroke; a journal of cerebral circulation 1996;27:1393-8. [55] Danielisova V, Nemethova M, Burda J. The protective effect of aminoguanidine on cerebral ischemic damage in the rat brain. Physiological research / Academia Scientiarum Bohemoslovaca 2004;53:533-40. [56] Iadecola C, Zhang F, Xu X. Inhibition of inducible nitric oxide synthase ameliorates cerebral ischemic damage. The American journal of physiology 1995;268:R286-92. [57] Zhang F, Iadecola C. Temporal characteristics of the protective effect of aminoguanidine on cerebral ischemic damage. Brain research 1998;802:104-10. [58] Mungrue IN, Bredt DS. nNOS at a glance: implications for brain and brawn. Journal of cell science 2004;117:2627-9. [59] Gursoy-Ozdemir Y, Bolay H, Saribas O, Dalkara T. Role of endothelial nitric oxide generation and peroxynitrite formation in reperfusion injury after focal cerebral ischemia. Stroke; a journal of cerebral circulation 2000;31:1974-80; discussion 81. [60] Tomimoto H, Nishimura M, Suenaga T, Nakamura S, Akiguchi I, Wakita H, et al. Distribution of nitric oxide synthase in the human cerebral blood vessels and brain tissues. J Cereb Blood Flow Metab 1994;14:930-8. [61] Kader A, Frazzini VI, Solomon RA, Trifiletti RR. Nitric oxide production during focal cerebral ischemia in rats. Stroke; a journal of cerebral circulation 1993;24:1709-16. [62] Dalkara T, Yoshida T, Irikura K, Moskowitz MA. Dual role of nitric oxide in focal cerebral ischemia. Neuropharmacology 1994;33:1447-52. [63] Morikawa E, Moskowitz MA, Huang Z, Yoshida T, Irikura K, Dalkara T. L-arginine infusion promotes nitric oxide-dependent vasodilation, increases regional cerebral blood flow, and reduces infarction volume in the rat. Stroke 1994;25:429-35. [64] Zhang F, White JG, Iadecola C. Nitric oxide donors increase blood flow and reduce brain damage in focal ischemia: evidence that nitric oxide is beneficial in the early stages of cerebral ischemia. J Cereb Blood Flow Metab 1994;14:217-26. [65] Salom JB, Orti M, Centeno JM, Torregrosa G, Alborch E. Reduction of infarct size by the NO donors sodium nitroprusside and spermine/NO after transient focal cerebral ischemia in rats. Brain research 2000;865:149-56. [66] Onoue S, Endo K, Yajima T, Kashimoto K. Pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal peptide attenuate glutamate-induced nNOS activation and cytotoxicity. Regulatory peptides 2002;107:43-7. [67] Ferriero DM, Holtzman DM, Black SM, Sheldon RA. Neonatal mice lacking neuronal nitric oxide synthase are less vulnerable to hypoxic-ischemic injury. Neurobiology of disease 1996;3:64-71. [68] Huang Z, Huang PL, Panahian N, Dalkara T, Fishman MC, Moskowitz MA. Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science (New York, NY 1994;265:1883-5. [69] Yoshida T, Limmroth V, Irikura K, Moskowitz MA. The NOS inhibitor, 7-nitroindazole, decreases focal infarct volume but not the response to topical acetylcholine in pial vessels. J Cereb Blood Flow Metab 1994;14:924-9. [70] Firestein BL, Bredt DS. Interaction of neuronal nitric-oxide synthase and phosphofructokinase-M. J Biol Chem 1999;274:10545-50. [71] Bizzoco E, Vannucchi MG, Faussone-Pellegrini MS. Transient ischemia increases neuronal nitric oxide synthase, argininosuccinate synthetase and argininosuccinate lyase co-expression in rat striatal neurons. Experimental neurology 2007;204:252-9. [72] Morton AJ, Nicholson LF, Faull RL. Compartmental loss of NADPH diaphorase in the neuropil of the human striatum in Huntington's disease. Neuroscience 1993;53:159-68. [73] Huang PL. Neuronal and endothelial nitric oxide synthase gene knockout mice. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas / Sociedade Brasileira de Biofisica [et al 1999;32:1353-9. [74] Huang Z, Huang PL, Ma J, Meng W, Ayata C, Fishman MC, et al. Enlarged infarcts in endothelial nitric oxide synthase knockout mice are attenuated by nitro-L-arginine. J Cereb Blood Flow Metab 1996;16:981-7. [75] He Z, Ibayashi S, Nagao T, Fujii K, Sadoshima S, Fujishima M. L-arginine ameliorates cerebral blood flow and metabolism and decreases infarct volume in rats with cerebral ischemia. Brain Res 1995;699:208-13. [76] Zhao X, Ross ME, Iadecola C. L-Arginine increases ischemic injury in wild-type mice but not in iNOS-deficient mice. Brain research 2003;966:308-11. [77] Zhang F, Xu S, Iadecola C. Time dependence of effect of nitric oxide synthase inhibition on cerebral ischemic damage. J Cereb Blood Flow Metab 1995;15:595-601. [78] Wu G, Morris SM, Jr. Arginine metabolism: nitric oxide and beyond. The Biochemical journal 1998;336 ( Pt 1):1-17. [79] Baur H, Luethi E, Stalon V, Mercenier A, Haas D. Sequence analysis and expression of the arginine-deiminase and carbamate-kinase genes of Pseudomonas aeruginosa. European journal of biochemistry / FEBS, 1989. p. 53-60. [80] Burne RA, Parsons DT, Marquis RE. Cloning and expression in Escherichia coli of the genes of the arginine deiminase system of Streptococcus sanguis NCTC 10904. Infection and immunity 1989;57:3540-8. [81] Shibatani T, Kakimoto T, Chibata I. Crystallization and properties of L-arginine deiminase of Pseudomonas putida. The Journal of biological chemistry 1975;250:4580-3. [82] Misawa S, Aoshima M, Takaku H, Matsumoto M, Hayashi H. High-level expression of Mycoplasma arginine deiminase in Escherichia coli and its efficient renaturation as an anti-tumor enzyme. Journal of biotechnology 1994;36:145-55. [83] Takaku H, Misawa S, Hayashi H, Miyazaki K. Chemical modification by polyethylene glycol of the anti-tumor enzyme arginine deiminase from Mycoplasma arginini. Jpn J Cancer Res 1993;84:1195-200. [84] Holtsberg FW, Ensor CM, Steiner MR, Bomalaski JS, Clark MA. Poly(ethylene glycol) (PEG) conjugated arginine deiminase: effects of PEG formulations on its pharmacological properties. J Control Release 2002;80:259-71. [85] Rose WC. Amino acid requirements of man. Federation proceedings 1949;8:546-52. [86] Snyderman SE, Boyer A, Holt LE, Jr. The arginine requirement of the infant. AMA 1959;97:192-5. [87] Husson A, Brasse-Lagnel C, Fairand A, Renouf S, Lavoinne A. Argininosuccinate synthetase from the urea cycle to the citrulline-NO cycle. European journal of biochemistry / FEBS 2003;270:1887-99. [88] Ensor CM, Holtsberg FW, Bomalaski JS, Clark MA. Pegylated arginine deiminase (ADI-SS PEG20,000 mw) inhibits human melanomas and hepatocellular carcinomas in vitro and in vivo. Cancer research 2002;62:5443-50. [89] Dillon BJ, Prieto VG, Curley SA, Ensor CM, Holtsberg FW, Bomalaski JS, et al. Incidence and distribution of argininosuccinate synthetase deficiency in human cancers: a method for identifying cancers sensitive to arginine deprivation. Cancer 2004;100:826-33. [90] Gong H, Zolzer F, von Recklinghausen G, Rossler J, Breit S, Havers W, et al. Arginine deiminase inhibits cell proliferation by arresting cell cycle and inducing apoptosis. Biochemical and biophysical research communications 1999;261:10-4. [91] Izzo F, Marra P, Beneduce G, Castello G, Vallone P, De Rosa V, et al. Pegylated arginine deiminase treatment of patients with unresectable hepatocellular carcinoma: results from phase I/II studies. J Clin Oncol 2004;22:1815-22. [92] Ascierto PA, Scala S, Castello G, Daponte A, Simeone E, Ottaiano A, et al. Pegylated arginine deiminase treatment of patients with metastatic melanoma: results from phase I and II studies. J Clin Oncol 2005;23:7660-8. [93] Noh EJ, Kang SW, Shin YJ, Kim DC, Park IS, Kim MY, et al. Characterization of mycoplasma arginine deiminase expressed in E. coli and its inhibitory regulation of nitric oxide synthesis. Molecules and cells 2002;13:137-43. [94] Thomas JB, Holtsberg FW, Ensor CM, Bomalaski JS, Clark MA. Enzymic degradation of plasma arginine using arginine deiminase inhibits nitric oxide production and protects mice from the lethal effects of tumour necrosis factor alpha and endotoxin. The Biochemical journal 2002;363:581-7. [95] Shen LJ, Lin WC, Beloussow K, Hosoya K, Terasaki T, Ann DK, et al. Recombinant arginine deiminase as a differential modulator of inducible (iNOS) and endothelial (eNOS) nitric oxide synthetase activity in cultured endothelial cells. Biochemical pharmacology 2003;66:1945-52. [96] Shen LJ, Beloussow K, Shen WC. Accessibility of endothelial and inducible nitric oxide synthase to the intracellular citrulline-arginine regeneration pathway. Biochemical pharmacology 2005;69:97-104. [97] Yu H-H, Shen L-J. Neuroprotection of recombinant arginine deiminase (rADI) in a neurons and microglia co-culture system. Master thesis 2007. [98] Grima G, Benz B, Do KQ. Glial-derived arginine, the nitric oxide precursor, protects neurons from NMDA-induced excitotoxicity. Eur J Neurosci 2001;14:1762-70. [99] Culcasi M, Lafon-Cazal M, Pietri S, Bockaert J. Glutamate receptors induce a burst of superoxide via activation of nitric oxide synthase in arginine-depleted neurons. The Journal of biological chemistry 1994;269:12589-93. [100] Xia Y, Dawson VL, Dawson TM, Snyder SH, Zweier JL. Nitric oxide synthase generates superoxide and nitric oxide in arginine-depleted cells leading to peroxynitrite-mediated cellular injury. Proceedings of the National Academy of Sciences of the United States of America 1996;93:6770-4. [101] Denizot F, Lang R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. Journal of immunological methods 1986;89:271-7. [102] Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, et al. Measurement of protein using bicinchoninic acid. Analytical biochemistry 1985;150:76-85. [103] Wiechelman KJ, Braun RD, Fitzpatrick JD. Investigation of the bicinchoninic acid protein assay: identification of the groups responsible for color formation. Analytical biochemistry 1988;175:231-7. [104] Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Analytical biochemistry 1982;126:131-8. [105] Liu B, Du L, Hong JS. Naloxone protects rat dopaminergic neurons against inflammatory damage through inhibition of microglia activation and superoxide generation. The Journal of pharmacology and experimental therapeutics 2000;293:607-17. [106] Misko TP, Schilling RJ, Salvemini D, Moore WM, Currie MG. A fluorometric assay for the measurement of nitrite in biological samples. Analytical biochemistry 1993;214:11-6. [107] Cohen JJ. Programmed cell death in the immune system. Advances in immunology 1991;50:55-85. [108] Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 1992;148:2207-16. [109] Tait JF, Gibson D, Fujikawa K. Phospholipid binding properties of human placental anticoagulant protein-I, a member of the lipocortin family. The Journal of biological chemistry 1989;264:7944-9. [110] Andree HA, Reutelingsperger CP, Hauptmann R, Hemker HC, Hermens WT, Willems GM. Binding of vascular anticoagulant alpha (VAC alpha) to planar phospholipid bilayers. The Journal of biological chemistry 1990;265:4923-8. [111] Sailer BL, Nastasi AJ, Valdez JG, Steinkamp JA, Crissman HA. Differential effects of deuterium oxide on the fluorescence lifetimes and intensities of dyes with different modes of binding to DNA. J Histochem Cytochem 1997;45:165-75. [112] Porath J, Fornstedt N. Group fractionation of plasma proteins on dipolar ion exchangers. Journal of chromatography 1970;51:479-89. [113] Beloussow K, Wang L, Wu J, Ann D, Shen WC. Recombinant arginine deiminase as a potential anti-angiogenic agent. Cancer letters 2002;183:155-62. [114] Boyde TR, Rahmatullah M. Optimization of conditions for the colorimetric determination of citrulline, using diacetyl monoxime. Analytical biochemistry 1980;107:424-31. [115] Sambrook J, Russell D. Molecular Cloning, A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press 2001. [116] Biedler JL, Roffler-Tarlov S, Schachner M, Freedman LS. Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer research 1978;38:3751-7. [117] Pizzi M, Boroni F, Bianchetti A, Moraitis C, Sarnico I, Benarese M, et al. Expression of functional NR1/NR2B-type NMDA receptors in neuronally differentiated SK-N-SH human cell line. Eur J Neurosci 2002;16:2342-50. [118] Ciccarone V, Spengler BA, Meyers MB, Biedler JL, Ross RA. Phenotypic diversification in human neuroblastoma cells: expression of distinct neural crest lineages. Cancer research 1989;49:219-25. [119] Apparsundaram S, Galli A, DeFelice LJ, Hartzell HC, Blakely RD. Acute regulation of norepinephrine transport: I. protein kinase C-linked muscarinic receptors influence transport capacity and transporter density in SK-N-SH cells. The Journal of pharmacology and experimental therapeutics 1998;287:733-43. [120] Adem A, Mattsson ME, Nordberg A, Pahlman S. Muscarinic receptors in human SH-SY5Y neuroblastoma cell line: regulation by phorbol ester and retinoic acid-induced differentiation. Brain research 1987;430:235-42. [121] McMillan CR, Sharma R, Ottenhof T, Niles LP. Modulation of tyrosine hydroxylase expression by melatonin in human SH-SY5Y neuroblastoma cells. Neurosci Lett 2007;419:202-6. [122] Babu BR, Griffith OW. N5-(1-Imino-3-butenyl)-L-ornithine. A neuronal isoform selective mechanism-based inactivator of nitric oxide synthase. The Journal of biological chemistry 1998;273:8882-9. [123] Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. The Biochemical journal 2001;357:593-615. [124] Koketsu N, Berlove DJ, Moskowitz MA, Kowall NW, Caday CG, Finklestein SP. Pretreatment with intraventricular basic fibroblast growth factor decreases infarct size following focal cerebral ischemia in rats. Ann Neurol 1994;35:451-7. [125] Hirst J, Goodin DB. Unusual oxidative chemistry of N(omega)-hydroxyarginine and N-hydroxyguanidine catalyzed at an engineered cavity in a heme peroxidase. The Journal of biological chemistry 2000;275:8582-91. [126] Tamatani T, Kotani M, Miyasaka M. Characterization of the rat leukocyte integrin, CD11/CD18, by the use of LFA-1 subunit-specific monoclonal antibodies. European journal of immunology 1991;21:627-33. [127] Milligan CE, Cunningham TJ, Levitt P. Differential immunochemical markers reveal the normal distribution of brain macrophages and microglia in the developing rat brain. The Journal of comparative neurology 1991;314:125-35. [128] Ii M, Sunamoto M, Ohnishi K, Ichimori Y. beta-Amyloid protein-dependent nitric oxide production from microglial cells and neurotoxicity. Brain research 1996;720:93-100. [129] Banati RB, Newcombe J, Gunn RN, Cagnin A, Turkheimer F, Heppner F, et al. The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity. Brain 2000;123 ( Pt 11):2321-37. [130] Morioka T, Kalehua AN, Streit WJ. Characterization of microglial reaction after middle cerebral artery occlusion in rat brain. The Journal of comparative neurology 1993;327:123-32. [131] Block ML, Hong JS. Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 2005;76:77-98. [132] Lee P, Son D, Lee J, Kim YS, Kim H, Kim SY. Excessive production of nitric oxide induces the neuronal cell death in lipopolysaccharide-treated rat hippocampal slice culture. Neurosci Lett 2003;349:33-6. [133] Matsuoka Y, Kitamura Y, Takahashi H, Tooyama I, Kimura H, Gebicke-Haerter PJ, et al. Interferon-gamma plus lipopolysaccharide induction of delayed neuronal apoptosis in rat hippocampus. Neurochem Int 1999;34:91-9. [134] Cunningham C, Wilcockson DC, Campion S, Lunnon K, Perry VH. Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J Neurosci 2005;25:9275-84. [135] Duport S, Garthwaite J. Pathological consequences of inducible nitric oxide synthase expression in hippocampal slice cultures. Neuroscience 2005;135:1155-66. [136] Kim WG, Mohney RP, Wilson B, Jeohn GH, Liu B, Hong JS. Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci 2000;20:6309-16. [137] Moriya R, Uehara T, Nomura Y. Mechanism of nitric oxide-induced apoptosis in human neuroblastoma SH-SY5Y cells. FEBS Lett 2000;484:253-60. [138] Nakazawa M, Uehara T, Nomura Y. Koningic acid (a potent glyceraldehyde-3-phosphate dehydrogenase inhibitor)-induced fragmentation and condensation of DNA in NG108-15 cells. J Neurochem 1997;68:2493-9. [139] Nomura Y, Uehara T, Nakazawa M. Neuronal apoptosis by glial NO: involvement of inhibition of glyceraldehyde-3-phosphate dehydrogenase. Hum Cell 1996;9:205-14. [140] Zhang J, Dawson VL, Dawson TM, Snyder SH. Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity. Science (New York, NY 1994;263:687-9. [141] McCarty MF. Down-regulation of microglial activation may represent a practical strategy for combating neurodegenerative disorders. Med Hypotheses 2006;67:251-69. [142] Dragunow M, Greenwood JM, Cameron RE, Narayan PJ, O'Carroll SJ, Pearson AG, et al. Valproic acid induces caspase 3-mediated apoptosis in microglial cells. Neuroscience 2006;140:1149-56. [143] Palmada M, Centelles JJ. Excitatory amino acid neurotransmission. Pathways for metabolism, storage and reuptake of glutamate in brain. Front Biosci 1998;3:d701-18. [144] Rameau GA, Chiu LY, Ziff EB. NMDA receptor regulation of nNOS phosphorylation and induction of neuron death. Neurobiol Aging 2003;24:1123-33. [145] Schelman WR, Andres RD, Sipe KJ, Kang E, Weyhenmeyer JA. Glutamate mediates cell death and increases the Bax to Bcl-2 ratio in a differentiated neuronal cell line. Brain Res Mol Brain Res 2004;128:160-9. [146] Bonfoco E, Krainc D, Ankarcrona M, Nicotera P, Lipton SA. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proceedings of the National Academy of Sciences of the United States of America 1995;92:7162-6. [147] Dawson VL, Dawson TM, London ED, Bredt DS, Snyder SH. Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proceedings of the National Academy of Sciences of the United States of America 1991;88:6368-71. [148] Hannemann A, Jandrig B, Gaunitz F, Eschrich K, Bigl M. Characterization of the human P-type 6-phosphofructo-1-kinase gene promoter in neural cell lines. Gene 2005;345:237-47. [149] Mander P, Borutaite V, Moncada S, Brown GC. Nitric oxide from inflammatory-activated glia synergizes with hypoxia to induce neuronal death. J Neurosci Res 2005;79:208-15. [150] Jekabsone A, Neher JJ, Borutaite V, Brown GC. Nitric oxide from neuronal nitric oxide synthase sensitises neurons to hypoxia-induced death via competitive inhibition of cytochrome oxidase. J Neurochem 2007;103:346-56. [151] Petullo D, Masonic K, Lincoln C, Wibberley L, Teliska M, Yao DL. Model development and behavioral assessment of focal cerebral ischemia in rats. Life Sci 1999;64:1099-108. [152] Clark RK, Lee EV, White RF, Jonak ZL, Feuerstein GZ, Barone FC. Reperfusion following focal stroke hastens inflammation and resolution of ischemic injured tissue. Brain Res Bull 1994;35:387-92. [153] Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 1999;22:391-7. [154] Perry TL, Hansen S. Technical pitfalls leading to errors in the quantitation of plasma amino acids. Clin Chim Acta 1969;25:53-8. [155] Takaku H, Takase M, Abe S, Hayashi H, Miyazaki K. In vivo anti-tumor activity of arginine deiminase purified from Mycoplasma arginini. Int J Cancer 1992;51:244-9. [156] Andrew PJ, Mayer B. Enzymatic function of nitric oxide synthases. Cardiovasc Res 1999;43:521-31. [157] Guix FX, Uribesalgo I, Coma M, Munoz FJ. The physiology and pathophysiology of nitric oxide in the brain. Prog Neurobiol 2005;76:126-52. [158] Mayer B, Andrew P. Nitric oxide synthases: catalytic function and progress towards selective inhibition. Naunyn Schmiedebergs Arch Pharmacol 1998;358:127-33. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37061 | - |
| dc.description.abstract | 一氧化氮(nitric oxide, NO)在人體內不但涉及許多生理功能,亦與神經疾病相關,例如:帕金森氏症、阿茲海默症、及腦缺氧所致的神經損傷等,因此,適當地調控一氧化氮之重要性不容小覷。基因合成精胺酸脫亞胺酶 (recombinant arginine deiminase, rADI) 因催化精胺酸 (L-arginine) 分解為瓜胺酸 (L-citrulline)的反應,而消耗一氧化氮合成酶的唯一受質。本研究分別活化誘導型一氧化氮合成酶(inducible nitric oxide synthase, iNOS)及神經型一氧化氮合成酶(neuronal nitric oxide synthase, nNOS),以探討rADI對於一氧化氮合成酶所媒介的神經毒性之影響。
於敝實驗室之前所建立的小神經膠質細胞和神經細胞的共同培養系統中,以2 μg/mL 的脂多醣 (lipopolysaccharide, LPS) 及1 ng/mL的γ-干擾素(interferon-γ, IFN-γ)誘導iNOS,以OX-42抗體區別該共同培養系統中的小神經膠質細胞和神經細胞,以annexin V及7-AAD試劑偵測凋亡及壞死之細胞,並以Griess method測量NO產生量。結果發現rADI可降低LPS/IFN-γ所誘導之NO產生(由88.8±3.6 μM 減為7.2±0.4 μM),將凋亡的神經細胞比率由30.5±2.2% 減為12.1±3.0%,壞死的神經細胞比率由11.3±1.0% 降至5.6±1.2%,並引起45.6±1.3%小神經膠質細胞凋亡。而rADI對神經的保護作用,不只是在與LPS/IFN-γ同時給予時能達到效果,在LPS/IFN-γ之後8小時內給予rADI,亦可達神經保護之效。 此外,我們利用NMDA於神經細胞中活化nNOS,以螢光方法測量NO產生量。即使未加入NMDA,就已有些基礎NO產生;在精胺酸存在下,NMDA誘導了39.71±3.9%之NO產生;而vinyl L-NIO(nNOS選擇性抑制劑)可抑制NMDA所誘導之NO產生,1400W(iNOS選擇性抑制劑)則無此效果;我們也發現NMDA在我們的系統中不會造成神經毒性。為瞭解精胺酸缺乏對於受NMDA刺激之神經細胞有無影響,我們將細胞分別置於含有精胺酸之緩衝液、缺乏精胺酸之緩衝液、含有精胺酸但事先加入rADI之緩衝液中,以NMDA誘導,結果發現只在含有精胺酸之緩衝液中,NMDA能誘導出NO。無論是在哪種緩衝液中、無論有否加入NMDA,細胞的粒線體膜電位都沒有差異,但是當我們將細胞培養於事先加入rADI的培養液中,以NMDA刺激24小時,細胞的存活率稍微減少至83.34±3.5%;若我們補充精胺酸至培養液中,細胞的存活率沒有減少。 在缺氧小鼠的實驗中,我們於再灌流後的2小時給予不同濃度的rADI,發現20 mU/mouse 的rADI明顯減少大腦皮質的損傷區域;然而,當我們增加樣本數,卻未發現神經保護的效果。rADI的安定性、劑量及給藥時間皆可能為影響rADI於缺氧小鼠之實驗結果的重要因素。 綜合上述,本研究之結論為:iNOS 所產生的NO會造成神經毒性,而rADI可保護神經細胞免於LPS/IFN-γ所造成之神經毒性;相反地,nNOS所產生的NO在我們的實驗系統中並不會對神經細胞造成傷害,短暫地於該系統中給予rADI對神經細胞並無影響,而長時間給予rADI則會減少神經細胞的存活率。 | zh_TW |
| dc.description.abstract | Nitric oxide (NO) is not only involved in a wide range of physiological functions, but also associated with neurodegenerative disorders, such as Parkinson’s, Alzheimer’s diseases, and cerebral ischemia. Therefore, modulation of NO is of vital importance. Recombinant arginine deiminase (rADI), which catalyzes the conversion of L-arginine to L-citrulline and ammonia, depletes L-arginine, the sole substrate of nitric oxide synthase (NOS). In this study, to investigate the effect of rADI on NOS mediated neurotoxicity, iNOS and nNOS were activated respectively.
A neurons and microglia co-culture in which iNOS mediated neurotoxicity was previously established in our laboratory by treating 2 μg/mL lipopolysaccharide (LPS) and 1 ng/mL interferon-γ (IFN-γ) to BV2 (a murine microglial cell line) and SH-SY5Y (a human neuroblastoma cell line) co-culture. NO production was measured by the Greiss assay. OX-42 antibody distinguished microglia from neurons. Cell apoptosis and necrosis was analyzed by annexin V and 7-AAD simultaneous staining. rADI recovered LPS/IFN-γ induced neuronal apoptosis (from 30.5±2.2% to 12.1±3.0%) and necrosis (from 11.3±1.0% to 5.6±1.2%) with attenuated NO production (from 88.8±3.6 μM to 7.2±0.4 μM) and increased microglial apoptosis (from 13.0±1.0% to 45.6±1.3%). The neuroprotective effect could not only be obtained when treated at the same time with LPS/IFN-γ, but also post LPS/IFN-γ. nNOS was activated in SH-SY5Y by N-methyl-D-aspartic acid (NMDA), and NO was measured by fluorometric method. In the absence of NMDA, there was already basal constitutive NO production. In the presence of L-arginine, 1 mM NMDA induced 39.71±3.9% NO production, which could be abolished by vinyl L-NIO (a selective nNOS inhibitor), but not by 1400W (a selective iNOS inhibitor). However, neither brief (1 hr) nor prolonged (24 hr) NMDA exposure decreased neuronal mitochondrial membrane potential and viability. To understand the effect of L-arginine deprivation on NMDA stimulated neurons, the cells were treated with NMDA in L-arginine free and rADI pretreated L-arginine containing buffer, and we found NMDA induced NO only in L-arginine containing buffer. There was no difference on mitochondrial membrane potential between all treatment groups. When the cells were exposed to NMDA in rADI pretreated medium for 24 hr, the cell viability slightly decreased to 83.34±3.5%. The cell viability was recovered when L-arginine was replenished to the rADI-pretreated medium. Mice were suffered from middle cerebral artery occlusion (MCAO) to mimic transient ischemia. 20 mU rADI, which was shown to ameliorate infarct volume during dose titration, was given to the mice at 2 hr after reperfusion. However, no substantial neuroprotective effect of rADI was obtained as we enlarged the sample size. Administration timepoint, dose, as well as stability of rADI may be key factors that influence the result of ischemic mice. In summary, NO produced via iNOS was cytotoxic to neurons, and rADI protected neurons from LPS/IFN-γ induced neurotoxicity in the co-culture. In contrast, NO produced via nNOS was not toxic to neurons in our in vitro model. Brief exposure of rADI had no effect on NMDA stimulated neuronal mitochondrial membrane potential, but prolonged L-arginine deprivation by rADI reduced neuronal viability. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T15:18:34Z (GMT). No. of bitstreams: 1 ntu-97-R95423010-1.pdf: 1569849 bytes, checksum: 7311e3222bc1c32ab7e6d04e47c98468 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 1 INTRODUCTION 1
1.1 Nitric oxide (NO) and nitric oxide synthase (NOS) 1 1.2 NO in central nervous system (CNS) 2 1.2.1 Generation of NO in brain cells 2 1.2.2 Cellular effects of NO 3 1.2.3 NO associated neuronal disorders 4 1.3 Roles of NOS isoforms and L-arginine in ischemic brain injury 4 1.3.1 Activation of NOSs during ischemic brain injury 4 1.3.2 Neurotoxicity mediated by iNOS 5 1.3.3 Neurotoxicity and neuroprotection mediated by nNOS 6 1.3.4 Neuroprotective effect of eNOS 6 1.3.5 Role of L-arginine in ischemic brain injury 7 1.4 Recombinant arginine deiminase (rADI) 8 1.4.1 Anti-tumor activity of rADI 8 1.4.2 Suppression of NO production by rADI 9 1.4.3 NOS selectivity of rADI 10 1.5 Neuroprotection of rADI in a neurons and microglia co-culture system 10 2 HYPOTHESIS AND SPECIFIC AIMS 11 3 MATERIALS AND METHODS 13 3.1 Materials 13 3.2 Recipes of reagents and solutions 13 3.3 Cell culture 17 3.4 Cell counting 17 3.5 The MTT assay 18 3.6 The bicinchoninic acid (BCA) assay 19 3.7 NO measurement 19 3.7.1 The Griess method 19 3.7.2 The 2,3-diaminonaphthalene (DAN) method 20 3.8 Flow cytometry 20 3.8.1 Cell apoptosis and necrosis analysis 21 3.8.2 Measurement of mitochondrial membrane potential (ΔΨm) 22 3.9 Preparation of arginine sepharose 23 3.10 Preparation of rADI 24 3.10.1 Expression and refolding 24 3.10.2 Purification 25 3.10.3 Determination of rADI activity 26 3.11 SDS-PAGE 27 3.12 A neurons and microglia co-culture in which iNOS-mediated neurotoxicity 28 3.12.1 A neurons and microglia co-culture 28 3.12.2 Distinguishing BV2 from SH-SY5Y in the co-culture 28 3.12.3 iNOS induction in the co-culture 28 3.13 nNOS induction in SH-SY5Y 29 3.13.1 Differentiation of SH-SY5Y 29 3.13.2 nNOS induction 29 3.13.3 NOS inhibitors treatment 29 3.14 Mice transient ischemia 30 3.14.1 Ischemia-reperfusion 30 3.14.2 Calculation of infarct volume 31 3.14.3 Analysis of serum L-arginine concentration 31 3.15 Statistical analysis 32 4 RESULTS 33 4.1 Characters of the expressed and purified rADI 33 4.2 Effect of rADI on iNOS-mediated neurotoxicity in a neurons and microglia co-culture 33 4.2.1 Binding of OX-42 monoclonal antibody to BV2 and SH-SY5Y 33 4.2.2 Effect of rADI treatment on co-culture 34 4.2.3 Effect of rADI on LPS/IFN-γ stimulated co-culture 34 4.2.3.1 Evaluation of rADI treatment on LPS/IFN-γ stimulated co-culture 34 4.2.3.2 Effect of delayed rADI treatment on LPS/IFN-γ stimulated co-culture 35 4.3 Effect of rADI on nNOS-activated neurons 35 4.3.1 Differentiation of SH-SY5Y 36 4.3.2 nNOS activation and rADI treatment in RA-differentiated SH-SY5Y 36 4.3.2.1 NO production 36 4.3.2.2 Mitochondrial membrane potential 37 4.3.2.3 Cell viability 37 4.4 Effect of rADI on mice suffered from transient ischemic brain injury 38 4.4.1 Effect of different rADI doses on mice suffered from MCAO 38 4.4.2 Effect of 20 mU rADI on mice suffered from MCAO 39 5 DISCUSSION 40 5.1 Purification of rADI 40 5.2 Cytotoxicity of rADI in a neurons and microglia co-culture 40 5.3 Effect of rADI on iNOS-mediated neurotoxicity in a neurons and microglia co-culture 41 5.4 Effect of rADI on nNOS-activated RA-differentiated SH-SY5Y cells 44 5.5 Different vulnerability of SH-SY5Y cells to iNOS and nNOS mediated neurotoxicity 48 5.6 Effect of rADI on mice suffered from transient ischemic brain injury 48 6 CONCLUSIONS 52 7 REFERENCES 73 | |
| dc.language.iso | en | |
| dc.subject | 神經毒性 | zh_TW |
| dc.subject | 一氧化氮 | zh_TW |
| dc.subject | 一氧化氮合成酶 | zh_TW |
| dc.subject | 精胺酸脫亞胺酶 | zh_TW |
| dc.subject | 神經細胞 | zh_TW |
| dc.subject | 小神經膠質細胞 | zh_TW |
| dc.subject | N-甲基-D-天門冬胺酸 | zh_TW |
| dc.subject | nitric oxide (NO) | en |
| dc.subject | neurotoxicity | en |
| dc.subject | N-methyl-D-aspartic acid (NMDA) | en |
| dc.subject | microglia | en |
| dc.subject | neurons | en |
| dc.subject | recombinant arginine deiminase (rADI) | en |
| dc.subject | nitric oxide synthase (NOS) | en |
| dc.title | 基因合成精胺酸脫亞胺酶對一氧化氮合成酶媒介之神經毒性影響 | zh_TW |
| dc.title | Effect of Recombinant Arginine Deiminase (rADI) on Nitric Oxide Synthase (NOS)-Mediated Neurotoxicity | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 符文美(Wen-Mei Fu),孔繁璐(Fan-Lu Kung) | |
| dc.subject.keyword | 一氧化氮,一氧化氮合成酶,精胺酸脫亞胺酶,神經細胞,小神經膠質細胞,N-甲基-D-天門冬胺酸,神經毒性, | zh_TW |
| dc.subject.keyword | nitric oxide (NO),nitric oxide synthase (NOS),recombinant arginine deiminase (rADI),neurons,microglia,N-methyl-D-aspartic acid (NMDA),neurotoxicity, | en |
| dc.relation.page | 88 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-25 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥學研究所 | zh_TW |
| 顯示於系所單位: | 藥學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 1.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
