請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36752
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林君榮 | |
dc.contributor.author | Chia-Hao Chen | en |
dc.contributor.author | 陳佳壕 | zh_TW |
dc.date.accessioned | 2021-06-13T08:14:14Z | - |
dc.date.available | 2010-08-02 | |
dc.date.copyright | 2005-08-02 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-20 | |
dc.identifier.citation | Ader P, Block M, Pietzsch S, and Wolffram S. Interaction of quercetin glucosides with the intestinal sodium/glucose co-transporter (SGLT-1). Cancer Lett. 162:175-180 (2001).
Akarawut W and Smith DE. Competitive inhibition of p-aminohippurate transport by quinapril in rabbit renal basolateral membrane vesicles. J. Pharmacokinet. Biopharm. 26:269-287 (1998). Arbuckle MI, Kane S, Porter LM, Seatter MJ, and Gould GW. Structure- function analysis of liver-type (GLUT2) and brain-type (GLUT3) glucose transporters: expression of chimeric transporters in xenopus oocytes suggests an important role for putative transmembrane helix 7 in determining substrate selectivity. Biochemistry 35:16519-16527 (1996). Boudry G, Lalles JP, Malbert CH, Grondahl ML, Unmack MA, and Skadhauge E. Soybean impairs Na+-dependent glucose absorption and Cl– secretion in porcine small intestine. Reprod. Nutr. Dev. 43:409–418 (2003). Brown GK. Glucose transporters: structure, function and consequences of deficiency. J. Inherit. Metab. Dis. 23:237-246 (2000). Cermak R, Landgraf S, and Wolffram S. Quercetin glucosides inhibit glucose uptake into brush-border membrane vesicles of porcine jejunum. Br. J. Nutr. 91:849–855 (2004). Crespy V, Morand C, Besson C, Manach C, Demigne C, and Remesy C. Comparison of the intestinal absorption of quercetin, phloretin and their glucoside in rats. J. Nutr. 131:2109-2114 (2001). Day AJ, Gee JM, DuPont MS, Johnson IT, and Williamson G. Absorption of quercetin-3-glucoside and quercetin-4'-glucoside in the rat small intestine: the role of lactase phlorizin hydrolase and the sodium-dependent glucose transporter. Biochem. Pharmacol. 65:1199-1206 (2003). Fiske CH and Subbarow Y. The colorimetric determination of phosphorous. J. Biol. Chem. 66:375-400 (1925). Freeman HJ, Ellis ST, Johnston GA, Kwan WC, and Quamme GA. Sodium-dependent D-glucose transport after proximal small intestinal resection in rat. Am. J. Physiol. 255:G292-297 (1988). Gee JM, Dupont MS, Rhodes MJC, and Johnson IT. Quercetin glucosides interact with the intestinal glucose transport pathway. Free Radic. Biol. Med. 25:19–25 (1998). Gould GW, Thomas HM, Jess TJ, and Bell GI. Expression of human glucose transporters in Xenopus oocytes: kinetic characterization and substrate specificities of the erythrocyte, liver, and brain isoforms. Biochemistry 30:5139-5145 (1991). Griffiths LA and Barrow A. Metabolism of flavonoid compounds in germ-free rats. Biochem. J. 130:1161-1162 (1972). Hediger MA and Rhoads DB. Molecular physiology of sodium-glucose cotransporters. Physiol. Rev. 74:993-1026 (1994). Hirayama BA, Sampedro AD, and Wright EM. Common mechanisms of inhibition for the Na+ /glucose (hSGLT1) and Na+ /Cl- /GABA (hGAT1) cotransporters. Br. J. Pharmacol . 134:484–495 (2001). Hollman PCH, de Vries JHM, van Leeuwen SD, Mengelers MJB, and Katan MB. Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. Am. J. Clin. Nutr. 62:1276-1282 (1995). Hollman PCH, van Trijp JM, Buysman MN, van der Gaag MS, Mengelers MJ, de Vries JH, and Katan MB. Relative bioavailability of the antioxidant flavonoid quercetin from various foods in man. FEBS Lett. 418:152-156 (1997). Hossain SJ, Kato H, Aoshima H, Yokoyama T, Yamada M, and Hara Y. Polyphenol-induced inhibition of the response of Na+/glucose cotransporter expressed in xenopus oocytes. J. Agric. Food Chem. 50:5215-5219 (2002). Johnston K, Sharp P, Clifford M, and Morgan L. Dietary polyphenols decrease glucose uptake by human intestinal Caco-2 cells. FEBS lett. 579:1653-1657 (2005). Jorgensen PL and Skou JC. Purification and characterization of (Na+-K+)-ATPase in preparations from the outer medulla of rabbit kidney. Biochim. Biophys. Acta 233:366-380 (1971). Jourdheuil DR, Masset D, Coppens R, Placidi M, Marino VD, Durand A, and Rahmani R. Intestinal absorption of drugs: digitalis binding and transport by brush-border membrane vesicles from human duodenum. Eur. J. Drug Metab. Pharmacokinet. 3:447-455 (1991). Kellett GL. The facilitated component of intestinal glucose absorption. J . Physiol. 531:585-595 (2001). Knekt P, Kumpulainen J, Jarvinen R, Rissanen H, Reunanen MHA, Hakulinen T, and Aromaa A. Flavonoids intake and risk of chronic disease. Am. J. Clin. Nutr. 76:560-568 (2002). Kobayashi Y, Suzuki M, Satsu H, Arai S, Hara Y, Suzuki K, Miyamoto Y, and Shimizu M. Green tea polyphenols inhibit the sodium-dependent glucose transporter of intestinal epithelial cells by a competitive mechanism. J. Agric. Food Chem. 48:5618-5623 (2000). Lee WS, Kanai Y, Wells RG, and Hediger MA. The high affinity Na+/glucose cotransporter. J. Biol. Chem. 269:12032-12039 (1994). Lin CJ, Akarawut W, and Smith DE. Competitive inhibition of glycylsarcosine transport by enalapril in rabbit renal brush border membrane vesicles: interaction of ACE inhibitors with high-affinity H+/peptide symporter. Pharm. Res. 16:609-615 (1999). Lin JT, Kormanec J, Wehner F, Badt SW, and Kinne RKH. High-level expression of Na+/D-glucose cotransporter (SGLT1) in a stably transfected Chinese hamster ovary cell line. Biochim. Biophys. Acta 1373:309-320 (1998). Maenz DD and Cheeseman CI. The Na+-independent D-glucose transporter in the enterocyte basolateral membrane: orientation and cytochalasin B binding characteristics. J. Membrane Biol. 97:259-266 (1987). Manach C, Scalbert A, Morand C, Remesy C, and Jimenez L. Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr. 79:727-47 (2004). Martin HJ, Kornmann F, and Fuhrmann GF. The inhibitory effects of flavonoids and antiestrogens on the Glut1 glucose transporter in human erythrocytes. Chem. Biol. Interact. 146:225-235 (2003). Mckinney TD and Kunnemann ME. Procainamide transport in rabbit renal cortical brush border membrane vesicles. Am. J. Physiol. 249:532- 541 (1985). Naftalin RJ, Afzal I, Cunningham P, Halai M, Ross C, Salleh N, and Milligan SR. Interactions of androgens, green tea catechins and the antiandrogen flutamide with the external glucose-binding site of the human erythrocyte glucose transporter GLUT1. Br. J. Pharmacol. 140:487-499 (2003). Park JB. Flavonoids are potential inhibitors of glucose uptake in U937 cells. Biochem. Biophys. Res. Commun. 260:568-574 (1999). Raja MM, Tyagi NK, and Kinne RKH. Phlorizin recognition in a C-terminal fragment of SGLT1 studied by tryptophan scanning and affinity labeling. J. Biol. Chem. 278:49154-49163 (2003). Ren WY, Qiao ZH, Wang HW, Zhu L, and Zhang L. Flavonoids: promising anticancer agents. Med. Res. Rev. 23:519-534 (2003). Ross JA, and Kasum CM. Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu. Rev. Nutr. 22:19-34 (2002). Scalbert A, and Williamson G. Dietary intake and bioavailability of polyphenols. J. Nutr. 130:2073S-2085S (2000). Sesink ALA, Arts ICW, Peters MF, and Hollman PCH. Intestinal uptake of quercetin-3-glucoside in rats involves hydrolysis by lactase phlorizin hydrolase. J. Nutr. 133:773-776 (2003). Sharp PA, Debnam ES, and Srai SK. Rapid enhancement of brush border glucose uptake after exposure of rat jejunal mucosa to glucose. Gut 39:545-550 (1996). Shimizu M, Kobayashi Y, Suzuki M, Satsu H, and Miyamoto Y. Regulation of intestinal glucose transport by tea catechins. Biofactors 13:61-5(2000). Song J, Kwon O, Chen S, Daruwala R, Eck P, Park JB, and Levine M. Falvonoid inhibition of sodium-dependent vitamin C transporter 1 (SVCT1) and glucose transporter isoform 2 (GLUT2), intestinal transporters for vitamin C and glucose. J. Biol. Chem. 277:15252-15260 (2002). Tsang R, Ao Z, and Cheeseman C. Influence of vascular and luminal hexoses on rat intestinal basolateral glucose transport. Can. J. Physiol. Pharmacol. 72:317-326 (1994). Turk E, Kerner CJ, Lostao MP, and Wright EM. Membrane topology of the human Na+/glucose cotransporter SGLT1. J. Biol. Chem. 271:1925-1934 (2002). Turner JR. Show me the pathway! Regulation of paracellular permeability by Na+-glucose cotransport. Adv. Drug Deliv. Rev. 41:265-281 (2000). Uldry M, Ibberson M, Hosokawa M, and Thorens B. GLUT2 is a high affinity glucosamine transporter. FEBS Lett. 524:199-203, 2002. Vaidyanathan JB, and Walle T. Cellular uptake and efflux of the tea flavonoid (-)epicatechin-3-gallate in the human intestinal cell line Caco-2. J. Pharmacol. Exp. Ther. 307:745-752 (2003). Vedavanam K, Srijayanta S, O’Reilly J, Raman A, and Wiseman H. Antioxidant action and potential antidiabetic properties of an isoflavonoid -containing soyabean phytochemical extract (SPE). Phytother. Res. 13:601–608 (1999). Walgren RA, Lin JT, Kinne RKH, and Walle T. Cellular uptake of dietary flavonoid quercetin 4'-β-glucoside by sodium-dependent glucose transporter SGLT1. J. Pharmacol. Exp. Ther. 294:837–843 (2000b). Walmsley AR, Barrett MP, Bringaud F, and Gould GW. Sugar transporters frombacteria, parasites and mammals: structure-activity relationships. Trends in Biochem. Sci. 23:476-481 (1998). Wolffram S, Block M, and Ader P. Quercetin-3-glucoside is transported by the glucose carrier SGLT1 across the brush border membrane of rat small intestine. J. Nutr. 132:630–635 (2002). Wright EM, Loo DDF, Mariana PH, Hirayama BA, Turk E, Eskandari S, and Lam JT. Structure and function of the Na+/glucose cotransporter. Acta. Physiol. Scand., 163, suppl. 643:257-264 (1998). Wright EM, Martin MG, and Turk E. Intestinal absorption in health and disease--sugars. Best Pract. Res. Clin. Gastroenterol. 17:943-956 (2003). Wright EM, Van os CH, and Mircheff AK. Sugar uptake by intestinal basolateral membrane vesicles. Biochim. Biophys. Acta 597:112-124 (1980). Yoshino K, Suzuki M, Sasaki K, Miyase T, and Sano M. Formation of antioxidants from (-)-epigallocatechin gallate in mild alkaline fluids, such as authentic intestinal juice and mouse plasma. J. Nutr. Biochem. 10:223-229 (1999). Zhou S, Gao Y, Jiang W, Huang M, Xu A, and Paxton JW. Interactions of herbs with cytochrome P450. Drug Metab. Rev. 35:35-98,2003. Zhu QY, Zhang A, Tsang D, Huang Y, and Chen ZY. Stability of green tea catechins. J. Agric. Food Chem. 45:4624-4628 (1997). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36752 | - |
dc.description.abstract | 類黃酮素是屬於一種多酚類的化合物,廣泛分佈於各種食物或藥用植物中,大部分的類黃酮素是以β-配醣體(β-glycosides)的型式存在於食物中。在之前的研究中認為這些配醣體不能被小腸所吸收只有非醣體才能穿過腸道細胞膜被吸收。然而,最近的研究指出類黃酮素的吸收似乎和它所接上的醣基有關,但是相關的機轉仍然有待釐清。本實驗的目的是想藉由分離刷狀外緣細胞膜微粒(brush border membrane vesicles;BBMV)和微血管側細胞膜微粒(basolateral membrane vesicles;BLMV)來說明類黃酮素和小腸葡萄糖轉運蛋白之間的作用關係。Wistar大白鼠空腸的BBMV或BLMV是分別利用不同的離心速度或密度梯度去進行分離。實驗則利用快速過濾技術去測量flavones、flavonols、flavanones、isoflavones 和catechins對於氚(3H)標定的葡萄糖在BBMV和BLMV中攝取量的差別。除此之外,更進一步的去探討quercetin-3-O-β-D-glucoside (Q3G)和epicatechin gallate (ECG)的吸收機轉。結果顯示類黃酮素會抑制葡萄糖經由鈉離子依賴型的葡萄糖轉運蛋白(SGLT1)和促進型的葡萄糖轉運蛋白(GLUT2)的攝取。在BBMV中,類黃酮素對於葡萄糖攝取量的抑制程度為ECG > hesperetin ≒ Q3G ≒ naringenin > genistein ≒ genistin >其他類黃酮素。 在BLMV中,類黃酮素對於葡萄糖攝取量的抑制程度為ECG > Q3G ≒ fisetin ≒ gossypin ≒ genistein > naringin ≒ naringenin ≒ quercetin-3-O-β-D-galactoside ≒ daidzin > hesperetin > daidzein ≒ genistin >其他類黃酮素。不同的位置的羥基取代則可能會影響抑制小腸的葡萄糖轉運蛋白運送葡萄糖的效果。更進一步的研究顯示,Q3G和ECG會以競爭型的機轉去抑制BBMV和BLMV的葡萄糖攝取。在BBMV中,Q3G和ECG的Ki值大約分別為499 uM和170 uM;在BLMV中,Q3G和ECG的Ki值大約分別為404 uM和332 uM。所以它們的取代基位置對於葡萄糖轉運蛋白確認這些類黃酮素似乎是相當重要的。而Q3G和ECG也有可能是SGLT1和GLUT2的受質。 | zh_TW |
dc.description.abstract | Flavonoids are polyphenolic compounds that are widely distributed in foods or herbal medicines. Most flavonoids are present in food as β-glycosides. It was thought that such glycosides could not be absorbed from the intestine, and only aglycons could pass through the gut wall. However, recent evidences indicated that the absorption of flavonoids would be dependent on conjugated sugars, whereas the absorption mechanisms are still far from clear. The objective of this study was to elucidate the interaction mechanisms between flavonoids and intestinal glucose transporters using isolated brush-border membrane vesicles (BBMV) and basolateral membrane vesicles (BLMV). BBMV and BLMV were isolated from Wistar rat jejunums by differential centrifugation and density gradient centrifugation, respectively. Uptakes of 3H-glucose by BBMV and BLMV were measured using a rapid filtration technique in the absence or the presence of flavones, flavonols, flavanones, catechins, and isoflavones. In addition, the uptake mechanism of quercetin-3-O-β-D-glucoside (Q3G) and epicatechin gallate (ECG) were further explored. It was showed that flavonoids inhibited glucose uptake by sodium-dependent glucose transporter (SGLT1) and facilitative glucose transporter (GLUT2). In BBMV, the order of inhibitory degree was ECG > hesperetin ≒ Q3G ≒ naringenin > genistein ≒ genistin > other flavonoids. In BLMV, the order of inhibitory degree was ECG > Q3G ≒ fisetin ≒ gossypin ≒ genistein > naringin ≒ naringenin ≒ quercetin-3-O-β-D-galactoside ≒ daidzin > hesperetin > daidzein ≒ genistin > other flavonoids. The substituted positions for the hydroxyl groups in flavonoids could affect the inhibitory activity on glucose uptake by intestinal glucose transporters. Further studies showed that Q3G and ECG competitively inhibited glucose uptake in both BBMV and BLMV. In BBMV, the Ki values for Q3G and ECG were proximately 499uM and 170 uM, respectively. In BLMV, the Ki values for Q3G and ECG were proximately 404 uM and 332 uM, respectively. Their substituted positions would be important for the recognition of flavonoids by intestinal glucose transporter. Also, it was suggested that Q3G and ECG could be substrates of SGLT1 and GLUT2. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T08:14:14Z (GMT). No. of bitstreams: 1 ntu-94-R92423009-1.pdf: 1117766 bytes, checksum: 72d56c2f145f8980c43572e6bd80d37d (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 第一章 緒論 (Introduction) 1
一、類黃酮素(flavonoids)之簡介 1 二、Flavonoids的腸道吸收機轉和glucose transporters之作用關係 3 三、小腸的葡萄糖轉運蛋白之簡介 6 第二章 實驗目的 (Objectives) 14 第三章 實驗材料和方法 (Materials and Methods) 15 一、實驗材料 15 二、實驗方法 15 分離大鼠小腸刷狀外緣細胞膜微粒(BBMV) 15 分離大鼠小腸微血管側細胞膜微粒(BLMV) 17 蛋白質濃度測定 20 鹼性磷酸酶活性測定 21 鈉-鉀腺苷三磷酸水解酶活性測定 22 放射性物質攝取量測定 24 三、葡萄糖在大鼠腸道BBMV攝取量之研究 26 時間和葡萄糖攝取量之研究 26 葡萄糖濃度和葡萄糖攝取量之研究 27 Flavonoids對葡萄糖攝取量影響之研究 27 Flavonoids濃度抑制50%的葡萄糖攝取量之研究 (Drug IC50 study) 28 Flavonoids影響葡萄糖攝取量之機轉研究 (Drug mechanism study) 29 四、葡萄糖在大鼠腸道BLMV攝取量之研究 29 時間和葡萄糖攝取量之研究 29 葡萄糖濃度和葡萄糖攝取量之研究 30 Flavonoids對葡萄糖攝取量影響之研究 31 Flavonoids濃度抑制50%葡萄糖攝取量之研究 (Drug IC50 study) 31 Flavonoids影響葡萄糖攝取之機轉研究 (Drug mechanism study) 32 五、數據分析 33 第四章 實驗結果 (Results) 40 一、BBMV與BLMV之純化結果 40 二、各類flavonoids抑制BBMV或BLMV葡萄糖攝取量之研究結果 42 三、Flavonoids濃度抑制50%的葡萄糖攝取量之研究結果 46 四、ECG影響葡萄糖攝取之研究結果 (Drug mechanism study) 47 五、Q3G影響葡萄糖攝取之研究結果 (Drug mechanism study) 49 第五章 結果討論 (Discussion) 71 一、BBMV和BLMV純化結果之討論 71 二、Flavonoids構造變化與抑制葡萄糖轉運蛋白效果之探討 72 二、Q3G抑制BBMV和BLMV葡萄糖攝取量之機轉探討 75 三、ECG抑制BBMV和BLMV葡萄糖攝取量之機轉探討 76 四、腸道中醣類水解酵素和flavonoids之吸收機轉探討 78 五、Flavonoids在腸道中吸收之機轉整理 78 第六章 參考文獻 (References) 85 附錄A 類黃酮素和葡萄糖轉運蛋白抑制劑的結構圖 92 附錄B 實驗材料 96 附錄C 原始數據 103 圖目錄 圖1-1 Flavonoids的共同基本骨架 11 圖1-2 小腸中的葡萄糖轉運蛋白分佈示意圖 11 圖1-3 SGLT1的二級結構示意圖 12 圖1-4 GLUTs的二級結構示意圖 12 圖3-1 分離大鼠小腸刷狀外緣細胞膜微粒(BBMV)流程圖 36 圖3-2 分離大鼠小腸微血管側細胞膜微粒(BLMV)流程圖 37 圖3-3 快速過濾技術示意圖 38 圖4-1 時間和葡萄糖攝取量在大鼠小腸分離出之BBMV中的關係圖 51 圖4-2 時間和葡萄糖攝取量在大鼠小腸分離出之BLMV中的關係圖 51 圖4-3 葡萄糖濃度和葡萄糖攝取量在大鼠小腸分離出之BBMV中的關係圖 52 圖4-4 葡萄糖濃度和葡萄糖攝取量在大鼠小腸分離出之BLMV中的關係圖 52 圖4-5 各種不同濃度的ECG和Q3G抑制葡萄糖攝取量在大鼠小腸 53 圖4-6 各種不同濃度的ECG和Q3G抑制葡萄糖攝取量在大鼠小腸 53 圖4-7 ECG影響葡萄糖攝取量在大鼠小腸分離出之BBMV中的非線性關係圖 54 圖4-8 ECG影響葡萄糖攝取量在大鼠小腸分離出之BBMV中的線性關係圖 54 圖4-9 ECG影響葡萄糖攝取量在大鼠小腸分離出之BBMV中的線性關係圖 55 圖4-10 不同的ECG濃度下所得到的Lineweaver-Burk plot的斜率在大鼠小腸分離出之BBMV中的關係圖 55 圖4-11 ECG影響葡萄糖攝取量在大鼠小腸分離出之BLMV中的非線性關係圖 56 圖4-12 ECG影響葡萄糖攝取量在大鼠小腸分離出之BLMV中的線性關係圖 56 圖4-13 ECG影響葡萄糖攝取量在大鼠小腸分離出之BLMV中的線性關係圖 57 圖4-14 不同的ECG濃度下所得到的Lineweaver-Burk plot的斜率在大鼠小腸分離出之BLMV中的關係圖 57 圖4-15 Q3G影響葡萄糖攝取量在大鼠小腸分離出之BBMV中的非線性關係圖 58 圖4-16 Q3G影響葡萄糖攝取量在大鼠小腸分離出之BBMV中的線性關係圖 58 圖4-17 Q3G影響葡萄糖攝取量在大鼠小腸分離出之BBMV中的線性關係圖 59 圖4-18 不同的Q3G濃度下所得到的Lineweaver-Burk plot的斜率在大鼠小腸分離出之BBMV中的關係圖 59 圖4-19 Q3G影響葡萄糖攝取量在大鼠小腸分離出之BLMV中的非線性關係圖 60 圖4-20 Q3G影響葡萄糖攝取量在大鼠小腸 60 圖4-21 Q3G影響葡萄糖攝取量在大鼠小腸分離出之BLMV中的線性關係圖 61 圖4-22 不同的Q3G濃度下所得到的Lineweaver-Burk plot的斜率在大鼠小腸分離出之BLMV中的關係圖 61 圖5-1 有效的抑制SGLT1的Flavonoids 3D結構圖 79 圖5-2 有效的抑制GLUT2的Flavonoids 3D結構圖 80 圖5-3 Hesperetin和Naringenin的兩種安定立體結構圖 81 圖5-4 Flavonoids在小腸的吸收機轉 82 表目錄 表1-1 常見的葡萄糖轉運蛋白的組織分佈和功能特性整理表 13 表3-1 各種細胞膜上特異的酵素 39 表4-1 SGLT1的Km和Vmax值的比較表 62 表4-2 GLUT2的Km和Vmax值的比較表 63 表4-3 各種flavonoids (0.1mM)在大鼠腸道分離出之BBMV和BLMV中抑制葡萄糖攝取的關係 64 表4-4 Specific inhibitors (0.1mM)抑制葡萄糖攝取的比較表 65 表4-5 Flavonols (0.1mM)抑制葡萄糖攝取的比較表 65 表4-6 Flavanones和Flavones (0.1mM)抑制葡萄糖攝取的比較表 66 表4-7 Isoflavones (0.1mM)抑制葡萄糖攝取的比較表 67 表4-8 Catechins (0.1mM)抑制葡萄糖攝取的比較表 67 表4-9 ECG和Q3G抑制50%的葡萄糖攝取量(IC50)在大鼠腸道分離出之BBMV和BLMV中的比較表 68 表4-10 ECG影響葡萄糖攝取在大鼠腸道分離出之BBMV和BLMV中的比較表 69 表4-11 Q3G影響葡萄糖攝取在大鼠腸道分離出之BBMV和BLMV中的比較表 70 表5-1 在BLMV中葡萄糖濃度和葡萄糖攝取量的fitting結果比較表 83 表5-2 Flavonoids基本骨架上接上不同的官能基影響SGLT1和GLUT2葡萄糖攝取量之結果整合比較表 84 | |
dc.language.iso | zh-TW | |
dc.title | 類黃酮素與大鼠小腸之葡萄糖轉運蛋白作用關係之探討 | zh_TW |
dc.title | Interactions between flavonoids and rat intestinal glucose transporters | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳繼明,李水盛,林榮信,陳香惠 | |
dc.subject.keyword | 類黃酮素,小腸的葡萄糖轉運蛋白,刷狀外緣細胞膜微粒,微血管側細胞膜微粒, | zh_TW |
dc.subject.keyword | flavonoids,intestinal glucose transporter,BBMV,BLMV, | en |
dc.relation.page | 112 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-20 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 藥學研究所 | zh_TW |
顯示於系所單位: | 藥學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 1.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。