請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36158
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 高純琇 | |
dc.contributor.author | Li-Hua Chang | en |
dc.contributor.author | 張麗華 | zh_TW |
dc.date.accessioned | 2021-06-13T07:52:38Z | - |
dc.date.available | 2007-01-21 | |
dc.date.copyright | 2005-08-02 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-25 | |
dc.identifier.citation | 1. Couvreur, P., Barratt, G., Fattal, E., Legrand, P. and Vauthier, C. Nanocapsule technology: a review. Critical Reviews in Therapeutic Drug Carrier Systems 2002;19(2):99-134.
2. Nishioka, Y. and Yoshino, H. Lymphatic targeting with nanoparticulate system. Advanced Drug Delivery Reviews 2001;47(1):55-64. 3. Pinto-Alphandary H., Aboubakar, M., Jaillard, D., Couvreur, P. and Vauthier, C. Visualization of insulin-loaded nanocapsules: in vitro and in vivo studies after oral administration to rats. Pharmaceutical Research 2003;20(7):1071-1084. 4. Damge, C. Nanocapsules as carriers for oral peptide delivery. Journal of Controlled Release 1990;13:233-239. 5. Panyam, J. and Labhasetwar, V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Advanced Drug Delivery Reviews 2003;55:329-347. 6. Gref, R., Minamitake, Y., Peracchia, M.T., Trubetskoy, V., Torchilin, V. and Langer, R. Biodegradable long-circulating polymeric nanospheres. Science 1994;263:1600-1603. 7. Gaur, U., Sahoo, S., De, T., Ghosh, P., Maitra, A. and Ghosh, P. Biodistribution of fluoresceinated dextran using novel nanoparticles evading reticuloendothelial system. International Journal of Pharmaceutics 2000;202(1-2):1-10. 8. Hans, M.L. and Lowman, A. M. Biodegradable nanoparticles for drug delivery and targeting. Current Opinion in Solid State and Materials Sciences 2002;6:319-327. 9. Kreuter, J. Nanoparticulate systems in drug delivery and targeting. Journal of Drug Targeting 1995;3(3):171-3. 10. Barratt, G.M. Therapeutic applications of colloidal drug carriers. Pharmaceutical Science & Technology Today 2000;3:163-171. 11. Kawashima, Y. Nanoparticulate systems for improved drug delivery. Advanced Drug Delivery Reviews 2001;47(1):1-2. 12. Brigger, I., Dubernet, C. and Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Advanced Drug Delivery Reviews 2002;54:631-651. 13. Chavany, C., Doan, T.L., Couveour, P., Puisieux, F. and Helene, C. Polyalkylcyanoacrylate nanoparticles as polymeric carriers for antisense oligonucleotides. Pharmaceutical Research 1992;9(441-449):441-449. 14. Couvreur, P., Kante, B., Roland, M., Guiot, P., Bauduin, P. and Speiser, P. Polycaynoacrylate nanocapsules as potential lysosomotropic carriers: preparation, morphogical and sorptive Properties. Journal of Pharmacy & Pharmacology 1979;31(5):331-332. 15. Stenekes, R.J.H., Loebis, A.E., Fernandes, C.M., Crommelin, D.J.A. and Hennink, W.E. Controlled release of liposomes from biodegradable dextran microspheres: A novel delivery concept. Pharmaceutical Research 2000;17(6):690-695. 16. Janes, K., Calvo, P. and Alonso, M. Polysaccharide colloidal particles as delivery systems for macromolecules. Advanced Drug Delivery Reviews 2001;47(1):83-97. 17. Chandra, R. and Rustgi, R. Biodegradable polymers. Progress in Polymer Science 1998;23(7):1273-1335. 18. Kedzierewicz, F., Thouvenot, P., Monot, I., Hoffman, M. and Maincent, P. Influence of different physicochemical conditions on the release of indium oxine from nanocapsules. Journal of Biomedical Materials Research 1998;39(4):588-93. 19. Santos-Magalhaes, N.S., Pontes, A., Pereira, V.M. and Caetano, M.N. Colloidal carriers for benzathine penicillin G: nanoemulsions and nanocapsules. International Journal of Pharmaceutics 2000;208(1-2):71-80. 20. Ardia, A.E. US patent, 2467926. 1949. 21. Vanthier, C., Dubernet, C., Fattal, E., Pinto-Alphandary, H. and Couvreur, P. Poly(alkylcyanoacrylates) as biodegradable materials for biomedical applications. Advanced Drug Delivery Reviews 2003;55:519-548. 22. Galardo, M., Couarraze, G.., Denizot, B., Treupel, L., Couvreur, P. and Puisieux, F. Study of the mechanisms of formation of nanoparticles and nanocapsules of polyisobutyl-2-cyanocarylate. International Journal of Pharmaceutics 1993;100:55-64. 23. Katti, D. and Krishnamurti, N. Anionic polymerization of alkyl cyanoacrylates: In vitro model studies for in vivo applications. Journal of Applied Polymer Science 1999;74(2):336-344. 24. Spiegel, S.M., Vinuela, F., Goldwasser, J.M., Fox, A.J. and Pelz, D.M. Adjusting the polymerization time of isobutyl-2 cyanoacrylate. American Journal of Neuroradiology 1986;7(1):109-12. 25. Tseng, Y.C., Hyon, S.H. and Ikada, Y. Modification of synthesis and investigation of properties for 2-cyanoacrylates. Biomaterials 1990;11(1):73-9. 26. Oowaki, H., Matsuda, S., Sakai, N., Ohta, T., Iwata, H., Sadato, A., Taki, W., Hashimoto, N. and Ikada, Y. Non-adhesive cyanoacrylate as an embolic material for endovascular neurosurgery. Biomaterials 2000;21(10):1039-1046. 27. Noh du Y. Therapeutic effect of the endoscopic n-butyl-2-cyanoacrylate injection for acute esophagogastric variceal bleeding: comparison with transjugular intrahepatic portosystemic shunt. Korean Journal of Gastroenterology 2004;43:186-195. 28. Lenaerts, V., Raymond, P., Juhasz, J., Simard, M.A. and Jolicoeur, C. New method for the preparation of cyanoacrylic nanoparticles with improved colloidal properties. Journal of Pharmaceutical Sciences 1989;78(12):1051-2. 29. al-Khouri, N., Roblot-Treupel, L., Fessi, H., Devissaguet, J.P. and Puisieux, F. Development of a new process for the monafacture of polyisobutylcyanoacrylate nanocapsules. International Journal of Pharmaceutics 1986;28:125-132. 30. Gasco, M.R. and Trotta, M. Nanoparticles form microemulsions. International Journal of Pharmaceutics 1986;29:267-268. 31. el-Samaligy, M.S., Rohdewald, P. and Mahmoud, H.A. Polyalkyl cyanoacrylate nanocapsules. Journal of Pharmacy & Pharmacology 1986;38(3):216-8. 32. Quellec, P., Gref, R., Dellacherie, E., Sommer, F., Tran, M. and Alonso, M. Protein encapsulation within poly(ethylene glycol)-coated nanospheres. II. Controlled release properties. Journal of Biomedical Materials Research. 1999;47(3):388-395. 33. Lowe, P.J. and Temple, C.S. Calcitonin and insulin in isobutylcyanoacrylate nanocapsules: protection against proteases and effect on intestinal absorption in rats. Journal of Pharmacy & Pharmacology 1994;46(7):547-52. 34. Damge, C., Vonderscher, J., Marbach, P. and Pinget, M. Poly(alkyl cyanoacrylate) nanocapsules as a delivery system in the rat for octreotide, a long-acting somatostatin analogue. Journal of Pharmacy & Pharmacology 1997;49:949-954. 35. Florence, A., Hillery, A., Hussain, N. and Jani, P. Nanoparticles as carriers for oral peptide absorption: studies on particle uptake and fate. Journal of Controlled Release 1995;36(1-2):39-46. 36. Aprahamian, M., Michel, C., Humbert, W., Devissaguet, J. and Damge, C. Transmucosal passage of polyalkylcyanoacrylate nanocapsules as a new drug carrier in the small intestine. Biology of the Cell 1987;61(1-2):69-76. 37. Jung, T., Kamm, W., Breitenbach, A., Kaiserling, E., Xiao, J. and Kissel, T. Biodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to affect mucosal uptake? European Journal of Pharmaceutics and Biopharmaceutics 2000;50(1):147-160. 38. Damge, C., Michel, C., Aprahamian, M. and Couvreur, P. New approach for oral administration of insulin with polyalkylcyanoacrylate nanocapsules as drug carrier. Diabetes 1988;37(2):246-51. 39. Aboubakar, M., Couvreur, P., Pinto-Alphandary, H., Gouritin, B., Lacour, B., Farinotti, R., Puisieux, F. and Vauthier, C. Insulin-loaded nanocapsules for oral administration: in vitro and in vivo investigation. Drug Development Research 2000;49:109-117. 40. Damge, C., Vranckx, H., Balschmidt, P. and Couvreur, P. Poly(alkyl cyanoacrylate) nanospheres for oral administration of insulin. Journal of Pharmaceutical Sciences 1997;86(12):1403-9. 41. Watnasirichaikul, S., Rades, T., Tucker, I. and Davies, N. In-vitro release and oral bioactivity of insulin in diabetic rats using nanocapsules dispersed in biocompatible microemulsion. Journal of Pharmacy & Pharmacology 2002;54(4):473-480. 42. Watnasirichaikul, S., Davies, N.M., Rades, T. and Tucker, I.G. Preparation of biodegradable insulin nanocapsules from biocompatible microemulsions. Pharmaceutical Research 2000;17(6):684-9. 43. Torres-Lugo, M. and Peppas, N.A. Transmucosal delivery systems for calcitonin: a review. Biomaterials 2000;21:1191-1196. 44. Couvereur, P. Toxicity of polyalkylcyanoacrylate nanoparticles II: Doxorubicin-loaded nanoparticles. Journal of Pharmaceutical Sciences 1982;71(7):790. 45. Page-Clisson, M.E., Pinto-Alphandary, H., Chachaty, E., Couvreur, P. and Andremont, A. Drug targeting by polyalkylcyanoacrylate nanoparticles is not efficient against persistent Salmonella. Pharmaceutical Research 1998;15:544-549. 46. Li, Y.P., Pei, Y.Y., Zhou, Z.H., Zhang, X.Y., Gu, Z.H., Ding, J., Zhou, J.J., Gao, X.J. and Zhu, J. H. Stralth polycyanoacrylate nanoparticles as tumor necrosis factor-α carriers: pharmacokinetics and anti-tumor effects. Biological and pharmaceutical bulletin 2001;24:662-665. 47.Li, Y.P., Pei, Y.Y., Zhou, Z.H., Zhang, X.Y., Gu, Z.H., Ding, J., Zhou, J.J. and Gao, X.J. PEGylated polycyanoacrylate nanoparticles as tumor necrosis factor-α carrier. Journal of Controlled Release. 2001;71:287-296. 48. Fontana, G., Licciardi, M., Mansueto, S., Schillaci, D. and Giammona G. Amoxicillin-loaded polyethylcyanoacrylate nanoparticles: Influence of PEG coating on the particle size, drug release rate and phagocytic uptake. Biomaterials 2001;22:2857-2865. 49. Peracchia, M.T., Harnisch, S., Pinto-Alphandary, H., Gulik, A., Dedieu, J.C., Desmaele, D., d'Angelo, J., Muller, R.H. and Couvreur, P. Visualization of in vitro protein-rejecting properties of PEGylated stealth polycyanoacrylate nanoparticles. Biomaterials 1999;20(14):1269-75. 50. Peracchia, M.T., Vauthier, C., Puisieux, F. and Couvreur, P. Development of sterically stabilized poly(isobutyl 2-cyanoacrylate) nanoparticles by chemical coupling of poly(ethylene glycol). Journal of Biomedical Materials Research 1997;34(3):317-26. 51. Stella, B., Arpicco, S., Peracchia, M.T., Desmaele, D., Hoebeke, J., Renoir, M., D'Angelo, J., Cattel, L. and Couvreur, P. Design of folic acid-conjugated nanoparticles for drug targeting. Jounral of Pharmaceutical Science 2000;89:1452-1464. 52. Zimmer, A. Antisense oligonucleotide delivery with polyhexylcyanocarylate nanoparticles as carriers. Method1s: A Companion to Methods in Eznymology 1999;18:286-295. 53. Kreuter, J. Nanoparticulate systems for brain delivery of drugs. Advanced Drug Delivery Reviews 2001;47:65-81. 54. Ramge, P., Unger, R., Oltrogge, J., Zenker, D., Begley, D., Kreuter, J., and von Briesen, H. Polysorbate-80 coating enhances uptake of polybutylcyanoacrylate (PBCA)-nanoparticles by human and bovine primary brain capillary endothelial cells. European Journal of Neuroscience 2000;12(6):1931-1940. 55. Olivier, J., Fenart, L., Chauvet, R., Pariat, C., Cecchelli, R. and Couet, W. Indirect evidence that drug brain targeting using polysorbate 80-coated polybutylcyanoacrylate nanoparticles is related to toxicity. Pharmaceutical Research 1999;16(12):1836-1842. 56. Alyautdin, R.N., Petrov, V. E., Langer, K., Berthold, A., Kharkevich, D.A. and Kreuter, J. Delivery of loperamide across the blood-brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharmaceutical Research 1997;14:325-328. 57. Alyautdin, R., Tezikov, E., Ramge, P., Kharkevich, D., Begley, D. and Kreuter, J. Significant entry of tubocurarine into the brain of rats by adsorption to polysorbate 80-coated polybutylcyanoacrylate nanoparticles: an in situ brain perfusion study. Journal of Microencapsulation 1998;15(1):67-74. 58. Gulyaev, A.E., Gelperina, S.E., Skidan, I.N., Antropov, A.S., Kivman, G.Y. and Kreuter, J. Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharmaceutical Research 1999;16:1564-1569. 59. Florence, A.T. and Hussain, N. Transcytosis of nanoparticle and dendrimerd delivery systems: evolving vistas. Advanced Drug Delivery Reviews 2001;50:S69-S89. 60. Gautier, J.C., Grangier, J. L., Barbier, A., Dupont, P., Dussosoy, D., Pastor, G. and Couvreur, P. Biodegradable nanoparticles for subcutaneous administration of growth hormone releasing factor (hGRF). Journal of Controlled Release 1992;3:205-210. 61. Das, S.K. Evaluation of poly(isobutylcyanoacrylate) nanoparticles for mucoadhesive ocular drug delivery. I. Effect of formulation variables on physicochemical characteristics of nanoparticles. Pharmaceutical Research 1995;12(4):534. 62. Zimmer, A., Krueter, J. and Robinson, J. R. Studies on the transport pathway of PBCA nanoparticles in ocular tissues. Journal of Microencapsulation 1991;8:497-504. 63. Fresta, M., Fontana, G., Bucolo, C., Cavallaro, G., Giammona, G. and Puglisi, G. Ocular tolerability and in vivo bioavailability of poly(ethylene glycol) (PEG)-coated polyethyl-2-cyanoacrylate nanosphere-encapsulated acyclovir. Journal of Pharmaceutical Sciences 2001;90(3):288-97. 64. Lenaerts, V., Couvreur, P., Christiaens-Leyh, D., Joiris, E. and Roland, M. Degradation of poly(isobutyl cyanoacrylate) nanoparticles. Biomaterials 1984;5:65-68. 65. Leonard, F., Kulkarni, R.K., Brandes, G., Nelson, J. and Cameron, J.J. Synthesis and degradation of poly(alkyl alpha-cyanoacrylates). Journal of Applied Polymer Science 1966;10:259-272. 66. Vezin, W.R., Florence, A.T. In vitro heterogeneous degradation of poly(n-alkyl alpha-cyanoacrylates). Journal of Biomedical Materials Research 1980;14(2):93-106. 67. Ryan, B. and McCann, G. Novel sub-ceiling temperature rapid depolymerization-repolymerisation reactions of cyanoacrylate. Macromoluar Rapid Communication 1996;57:217-27. 68. Behan, N., Birkinshaw, C. and Clarke, N. Poly n-butyl cyanoacrylate nanoparticles: a mechanistic study of polymerization and particle formation. Biomaterials 2001;22(11):1335-44. 69. Muller, R.H., Lherm, C., Herbort, J. and Couvreur, P. In vitro model for the degradation of alkylcyanoacrylate nanoparticles. Biomaterials 1990;11(8):590-5. 70. Park, D.H., Kim, S.B., Ahn, K., Kim, E.Y., Kim, Y.J. and Han, D.K. In Vitro degradation and cytotoxicity of alkyl 2-cyanoacrylate polymers for application to tissue adhesives. Journal of Applied Polymer Science 2003;89:3272-3278. 71. Cicek, H., Tuncel, A., Tuncel, M. and Piskin, E. Degradation and drug release characteristics of monosize polyethylcyanoacrylate microspheres. Journal of Biomaterial Science Polymer Edition 1994;6(9):845-856. 72. Scherer, D., Robinson, J.R. and Kreuter, J. Influence of enzymes on the stability of polybutylbyanoacrylate nanoparticles. International Journal of Pharmaceutics 1994;101:165-168. 73. Stein, M. and Hamacher, E. Degradation of polybutyl 2-cyanoacrylate microparticles. International Journal of Pharmaceutics 1992;80:R11-13. 74. Sullivan, C.O. and Birkinshaw, C. Hydrolysis of poly (n-butylcyanoacrylate) nanoparticles using esterase. Polymer Degradation and Stability 2002;78:7-15. 75. Gennaro, A.R. Remington's Pharmaceutical Sciences, 18th 1990;267-273 76. Lawrence, M.J. and Rees, G.D. Microemulsion-based media as novel drug delivery systems. Advanced Drug Delivery Reviews 2000;45(1):89-121. 77. James, S. Microencapsulation Method and Industrial Application 1996;15:411-534. 78. Ansel, H.C., Allen, L.V. and Popovich, N.G. Pharmaceutical Dosage Forms and Drug Delivery Systems 7th 1999;364-375. 79. http://psroc.phys.ntu.edu.tw/bimonth/v23/488.doc 80. Constantinides P.P. Lipid microemulsion for improving drug dissolution and oral absorption - physical and biopharmaceutical aspects. Pharmaceutical Research. 1995;12(11):1561-1572. 81. Tenjarla, T. Microemulsions: an overview and pharmaceutical applications. Critical Reviews in Therapeutic Drug Carrier Systems 1999;16(5):461-521. 82. Birdi, K.S. Microemulsion: Effect of alkyl chain length of alcohol and alkane. Colloid and Polymer Science 1982;260:628-631. 83. Yashima, M., Falk, L., Palmqvist, A. and Holmberg, K. Structure and catalytic properties of nanosized alumina supported platinum and palladium particles synthesized by reaction in microemulsion. Journal of Colloid and Interface Science 2003;268(2):348-356. 84. Rang, M. and Miller, C. Spontaneous emulsification of oils containing hydrocarbon, nonionic surfactant, and oleyl alcohol. Journal of Colloid and Interface Science 1999;209(1):179-192. 85. Constantinides, P.P. Formulation and intestinal absorption enhancement evaluation of water-in-oil microemulsions incorporating medium-chain glycerides. Pharmaceutical Research 1994;11(10):1385. 86. Wu, H., Ramachandran, C., Bielinska, A., Kingzett, K., Sun, R., Weiner, N. and Roessler, B. Topical transfection using plasmid DNA in a water-in-oil nanoemulsion. International Journal of Pharmaceutics 2001;221(1-2):23-34. 87. Alany, R., Rades, T., Agatonovic-Kustrin, S., Davies, N. and Tucker, I. Effects of alcohols and diols on the phase behaviour of quaternary systems. International Journal of Pharmaceutics 2000;196(2):141-145. 88. Baroli, B., Lopez-Quintela, M., Delgado-Charro, M., Fadda, A. and Blanco-Mendez, J. Microemulsions for topical delivery of 8-methoxsalen. Journal of Controlled Release 2000;69(1):209-218. 89. Wu, H., Ramachandran, C., Weiner, N.D. and Roessler, B.J. Topical transport of hydrophilic compounds using water-in-oil nanoemulsions. International Journal of Pharmaceutics 2001;220(1-2):63-75. 90. Constantinides, P.P. and Scalart, J. Formulation and physical characterization of water-in-oil microemulsions containing long- versus medium-chain glycerides. International Journal of Pharmaceutics 1997;158(1):57-68. 91. Wade, A. and Weller, P.J. Handbook of Pharmaceutical Excipients 1994:473-476. 92. Wade, A. and Weller, P.J. Handbook of Pharmaceutical Excipients 1994:375-378. 93. Strickley, R.G. Solubilizing excipients in oral and injectable formulations. Pharmaceutical Research 2004;21(2):201-30. 94. USP XXII. 1990;67-70. 95. Budavari, S. The Merck Index, 13th. Merck & Co., Inc. 2001;464. 96. Katime, I., Novoa, R. and Zuluaga, F. Swelling kinetics and release studies of theophylline and aminophylline from acrylic acid/n-alkyl methacrylate hydrogels. European Polymer Journal 2001;37(7):1465-1471. 97. Dollery S.R.(Eds.). Theophylline. In: Therapeutic drugs. Churchill Livingstone Inc., UK. 1991:T32-T41. 98. McEvoy G.K. Theophylline. In AHFS Drug Infromation 96. ASHSP, Bethesda, Maryland. 1996:2654. 99. Gundertremy, U., Hildebrandt, R., Hengen, N. and Weber, E. Non-linear Elimination Processes of Theophylline. European Journal of Clinical Pharmacology 1983;24(1):71-78. 100. Zhang Z. and Kaminsky L.S. Characterization of human cytochromes P450 involved in the theophylline 8-hydroxylation. Biochemical Pharmacology 1995;2(50):205-211. 101. 林書毅. 以w/o微乳劑系統製備奈米膠囊藥物載體之研究. 碩士論文 2002. 102. 許家禎. 以微乳劑製備奈米膠囊其體外釋離與降解之研究. 碩士論文 2004. 103. Carpignano, R., Gasco, M.R. and Morel, S. Optimization of doxorubicine incorporation and of the yield of polybutylcyanacrylate nanoparticles. Pharmaceutica Acta Helvetiae 1991;66(1):28-32. 104. Pan, W.S. and Hu, J. Studies of 5-fluorouracil nanocapsules. Yao Hsueh Hsueh Pao - Acta Pharmaceutica Sinica 1991;26(4):280-285. 105. Allemann, E., Gurny, R. and Doelker, E. Drug-Loaded Nanoparticles - Preparation Methods and Drug Targeting Issues. European Journal of Pharmaceutics and Biopharmaceutics 1993;39(5):173-191. 106. Watnasirichaikul, S., Rades, T., Tucker, I.G. and Davies, N.M. Effects of formulation variables on characteristics of poly (ethylcyanoacrylate) nanocapsules prepared from w/o microemulsions. International Journal of Pharmaceutics. 2002;235(1-2):237-246. 107. Budavari, S. The Merck Index, 13th ed. Merck & Co., Inc., NJ 2001:837-838. 108. Fresta, M., Cavallaro, G., Giammona, G., Wehrli, E. and Puglisi, G. Preparation and characterization of polyethyl-2-cyanoacrylate nanocapsules containing antiepileptic drugs. Biomaterials 1996;17(8):751-758. 109. Douglas. S.J. Nanoparticles in drug delivey. Critical Reviews in Therapeutic Drug Carrier Systems 1987;3(3):233-261. 110. Krause, H.J., Schwarz, A. and Rohdewald, P. Interfacial polymerization: a useful method for the preparation of polymethylcyanoacrylate nanoparticles. Drug Development and Industrial Pharmacy 1986;12(4):527-552. 111. Fontana, G., Pitarresi, G., Tomarchio, V., Carlisi, B. and Biagio, P. L. S. Preparation, characterization and in vitro antimicrobial activity of amipicillin-loaded polyethylcyanoacrylate nanoparticles. Biomaterials 1998;19:1009-1017. 112. Nishijo, J. and Takenaka, F. Studies on properties of the complex-medicines. I. differential thermogravimetric analysis of aminophylline. Yakugaku Zasshi 1979;99(8):824-829. 113. Ban, M., Madarasz, J., Bombicz, P., Pokol, G. and Gal, S. Thermal and structural study on the lattice compound 1,4-diammoniumbutane bis(theophyllinate). Thermochimica Acta 2004;420(1-2):105-109. 114. Salgueiro, A., Gamisans, F., Espina, M., Alcober, X., Garcia, M.L. and Egea, M.A. Cyclophosphamide-loaded nanospheres: analysis of the matrix structure by thermal and spectroscopic methods. Journal of Microencapsulation 2002;19(3):305-10. 115. Gamisans, F., Lacoulonche, F., Chauvet, A., Espina, M., Garcia, M. and Egea, M. Flurbiprofen-loaded nanospheres: analysis of the matrix structure by thermal methods. International Journal of Pharmaceutics 1999;179(1):37-48. 116. Sullivan, C.O. and Birkinshaw, C. In vitro degradation of insulin-loaded poly (n-butylcyanoacrylate) nanoparticles. Biomaterials 2004;25:4375-4382. 117. Nishijo, J., Ohno, K., Nishimura, K. and Hukuda, M. Solid complexes of theophylline with several aliphatic monoamines. Chemical and Pharmaceutical Bulletin 1982;30(2):391-397. 118. Ban, M., Madarasz, J., Pokol, G. and Gal, S. Evolved gas analysis of aminophylline and related compounds containing theophylline. Solid State Ionics 2004;172(1-4):587-589. 119. Hyvonen, S., Peltonen, L., Karjalainen, M. and Hirvonen, J. Effect of nanoprecipitation on the physicochemical properties of low molecular weight poly(L-lactic acid) nanoparticles loaded with salbutamol sulphate and beclomethasone dipropionate. International of Journal Pharmaceutics 2005;295(1-2):269-281. 120. Vandelli, M., Romagnoli, M., Monti, A., Gozzi, M., Guerra, P., Rivasi, F. and Forni, F. Microwave-treated gelatin microspheres as drug delivery system. Journal of Controlled Release 2004;96(1):67-84. 121. Bootz, A., Vogel, V., Schubert, D. and Kreuter, J. Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly(butyl cyanoacrylate) nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics 2004;57(2):369-75. 122. Vrancks, H., Demoustier, M. and Deleers, M. A new nanocapsule formulation with hydrophilic core: application to the oral administration of salmon calcitonin in rats. European Journal of Pharmaceutics & Biopharmaceutics 1996;42:345-347. 123. Lambert, G., Fattal, E., Pinto-Alphandary, H., Gulik, A. and Couvreur, P. Polyisobutylcyanoacrylate nanocapsules containing an aqueous core as a novel colloidal carrier for the delivery of oligonucleotides. Pharmaceutical Research 2000;17(6):707-14. 124. Aboubaker, M., Puisieux, F., Couvreur, P. and Vauthier, C. Physico-chemical characterization of insulin-loaded poly(isobutylcyanoacrylate) nanocapsules obtained by interfacial polymerization. International Journal of Pharmaceutics 1999;183:63-66. 125. Kreuter, J. Evaluation of nanoparticles as drug-delivery systems. III: materials, stability, toxicity, possibilities of targeting, and use. Pharmaceutica Acta Helvetiae. 1983;58(9-10):242-50. 126. Gasco, M.R., Morel, S., Trotta, M. and Viano, I. Doxorubicine englobed in polybutylcyanoacrylate nanocapsules: behaviour in vitro and in vivo. Pharmaceutica Acta Helvetiae 1991;66(2):47-9. 127. Tuncel, A., Cicek, H., Hayran, M. and Piskin, E. Monosize poly(ethylcyanoacrylate) microspheres: preparation and degradation properties. Journal of Biomedical Materials Research 1995;29:721-728. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36158 | - |
dc.description.abstract | 近年來,對於藥物載體的發展尤其是奈米顆粒受到相當的重視。奈米顆粒的粒徑範圍在10~1000 nm,且為奈米圓球和奈米膠囊的集合名詞。以聚氰基丙烯酸烷基酯(polyalkyl cyanoacrylate,PACA)為材質之奈米膠囊,具有生體相容性及生體可分解性,且聚合過程簡便,因此被廣泛地研究,希望能成為有效的藥物載體系統,以應用在藥物標的、癌症治療、基因治療、眼和口藥物傳遞需求等。
以水、界面活性劑(Span 80/ Tween 80,45/56 w/w混合物)及正己烷以8.08: 25.25:66.67重量比所組成的w/o奈米液滴系統為界面聚合的場所,其平均液滴大小約為53.20 nm,將模式藥aminophylline置於內相中,再以氰基丙烯酸乙酯(ethyl 2-cyanoacrylate,ECA)單體為聚合反應之單體,聚合完成後去除油相、界面活性劑和未反應的單體而得包覆水溶性藥物aminophylline的PECA奈米膠囊。當單體溶液添加量對水相體積比為1:40(配方A)和1:80(配方B)時,產率約達九成。 由FTIR和DSC的結果,可知 PECA奈米膠囊的主體為PECA聚合物。含藥奈米膠囊之IR圖譜同時具有PECA奈米膠囊與aminophylline的官能基特性,其DSC實驗結果發現aminophylline與PECA存在某種交互作用。 以SEM觀察PECA奈米膠囊,發現其為圓球形狀,且其平均粒徑較以DLS分析經純化後分散在反應媒液之奈米膠囊粒徑小。由DLS結果發現含藥奈米液滴系統(1 mg/mL和3 mg/mL)之平均液滴粒徑分別為58.77 nm 和60.90 nm 均較未含藥液滴系統之平均粒徑53.20 nm來的大,此現象亦可見於含藥奈米膠囊平均粒徑大於未含藥奈米膠囊平均粒徑。以相同條件的奈米液滴系統但不同單體量聚合形成之未含藥和含藥奈米膠囊,在配方A(單體量高)所得之平均粒徑分別為72.54 nm和82.70 nm均較配方B(單體量低)所得之平均粒徑分別為62.54 nm和66.10 nm為大,這可能是增加單體添加量,聚合後會形成較厚的聚合物外壁而有較大的粒徑。 在探討PECA奈米膠囊的藥物包覆率及載藥能力實驗,發現以相同藥物使用濃度為內相的液滴系統,在配方A所製備的含藥奈米膠囊之包覆率較配方B所得含藥耐米膠囊高。在藥物使用濃度1∼15 mg/mL的條件下,配方A包覆率1.81%∼44.76% 而配方B包覆率0.38%∼25.05%。究其原因,發現內相中加入aminophylline(1∼15 mg/mL)後,內相液滴的pH值由pH 3.0增加pH 3.5∼pH 8.3,而使ECA聚合速度過快,尚未及分散均勻即已產生聚合反應,而有未被包覆的內相液滴在經3000 rpm離心後,仍大量存在於正己烷層的現象,而致包覆率結果嚴重偏低。 在aminophylline奈米膠囊之藥物釋離研究結果顯示,所製得之奈米膠囊,均具有延緩藥物釋放的效果。在所有pH值下(3.0、7.4、9.0),配方B-1(單體量低)對於配方A-1和A¬-3(單體量高)均有較快之藥物釋出率,可能與膠囊壁厚度有關。溶離液的酸鹼度對aminophylline從PECA奈米膠囊中釋放亦有顯著影響,在不同pH值0.01M磷酸緩衝液下之藥物釋出率大小為pH 9.0 > pH 7.4 > pH 3.0,在第144小時的總釋離量亦分別可達到90%、80% 和60%,這可能和在較高的pH值環境下,PECA聚合物有較快的降解速度及aminophylline有較高的溶解度有關。由藥物釋離實驗之數據經模式分析及曲線揉合的結果顯示,藥物釋離的速率決定步驟應該是在藥物由奈米膠囊中釋出的步驟,而非在藥物通過透析膜的步驟。 | zh_TW |
dc.description.abstract | Over the past few decades, development of drug carriers such as nanoparticles has caught a lot of attention. Nanoparticle varies in size from 10 nm to 1000 nm and is the collective name for nanosphere and nanocapsule. Poly (alkyl cyanoacrylate) (PACA) nanocapsules have gained extensive interest as drug carriers because of the biocompatibility and biodegradability of the polymer and the simplicity of the polymerization process. The applications attempted to achieve by these carriers include drug targeting, cancer chemotherapy, gene therapy, ocular and oral drug delivery, etc. Therefore, PACA nanocapsule was considered to be a good candidate for the successful exploitation of the drug carrier.
Poly (ethyl 2-cyanoacrylate) (PECA) nanocapsules were prepared by interfacial polymerization of a water-in-oil (w/o) nanodroplet system, composed of water, surfactant mixture (Tween 80/ Span 80, 44/56 w/w) and hexane (8.08:25.25:66.67 w/w). The monomer used was ethyl 2-cyanoacrylate (ECA). After removing the oil phase, surfactant and un-reacted monomer, PECA nanocapsules were then obtained. Yields of the production of PECA nanocapsules were about 90%. Results of FTIR and DSC support that the obtained nanocapsules were mainly the products of PECA polymer. Functional IR peaks from PECA nanocapsule and aminophylline were observed in the IR spectrum of aminophylline-loaded nanocapsule. Interaction may exist between aminophylline and PECA in drug-loaded nanocapsule as indicated by DSC results. The morphology of nanocapsules was spherical in shape as seen by SEM. Particle sizes of the nanocapsules estimated by photographs of SEM were significantly lower than the values determined from DLS. The size of droplet in drug-loaded nanodroplet system was larger than the size of droplet in drug-unloaded nanodroplet system. The size of nanocapsules from formulation A (high monomer mass) was larger than those from formulation B (low monomer mass). This may be due to that the higher the monomer mass, the thicker the PECA polymeric wall surrounding the water core. The encapsulation efficiency of aminophylline-loaded PECA nanocapsules were in the range of 1.81% to 44.67% and 0.38% to 25.05% for formulation A and B at various aminophylline concentrations in aqueous phase respectively. The reason for such low encapsulation most likely is that the unstable w/o nanodroplet systems and the alteration of the pH of inner phase, in which higher pH (pH 3.5~ pH 8.3) observed at high drug concentration of aminophylline (1~15 mg/mL). The polymerization of ECA was too faster to be able to disperse evenly in the system before polymerization occurred and hence, leading to low encapsulation efficiently. The results of drug release study of PECA nanocapsules showed that the obtained nanocapsules exhibited sustained release characteristics. Drug-loaded nanocapsules from formulation B-1 had a faster drug release in all pH conditions (3.0, 7.4 and 9.0) than those from formulation A-1 and A-3. The release rates under 37 ℃ and 0.01 M PBS at different pH were in the order of pH 9.0 > pH 7.4 > pH 3.0 for all nanocapsules. This may partially due to the facts that the high PECA nanocapsules degradation and the high aminophylline solubility in alkaline pH conditions. When fitting the drug release profiles to simple mathematical model, it is suggested that limited step of drug release was drug releasing from PECA nanocapsules. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T07:52:38Z (GMT). No. of bitstreams: 1 ntu-94-R92423010-1.pdf: 987774 bytes, checksum: 8add95f89e21669ad694ae2bd816fdcd (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 中文摘要………………………………………………………………………….i
Abstract…………………………………………………….……………………iii 目錄……………………………………………………………………………....v 圖表目錄………………………………………………………………………..vii 壹、緒論…………………………………………………………………………1 1. 奈米藥物載體…………………………………………………………..1 2. 聚氰基丙烯酸烷基酯…………………………………………………..2 2-1. 物理化學特性……………………………………………………..3 2-2. 氰基丙烯酸烷基酯單體的用途…………………………………..6 2-3. 聚氰基丙烯酸烷基酯奈米顆粒…………………………………..6 3. 水油型奈米液滴系統…………………………………………………15 3-1. 界面活性劑……………………………………………………....15 3-2. 奈米液滴系統……………………………………………………18 3-3. 本研究所使用的水油型奈米液滴系統…………………………19 3-4. 於水油型奈米液滴系統進行界面聚合反應……………………22 4. 模式藥Aminophylline之簡介………………………………………...23 4-1. 性質………………………………………………………………23 4-2. 藥物動力學特性…………………………………………………24 5. 物性測量方法之理論…………………………………………………25 5-1. 黏度計……………………………………………………………25 5-2. 折射計……………………………………………………………25 5-3. 粒徑測量…………………………………………………………27 5-4. 電子顯微鏡技術…………………………………………………28 5-5. 傅利葉轉換紅外線光譜…………………………………………29 5-6. 示差掃瞄熱分析儀………………………………………………30 貳、研究目的……………………………………………………………………31 參、實驗方法…………………………………………………………………..32 1. 實驗藥品及儀器……………………………………………………....32 1-1. 實驗藥品…………………………………………………………32 1-2. 實驗器材…………………………………………………………33 2. 實驗步驟………………………………………………………………34 2-1. 水油型奈米液滴系統的製備……………………………………34 2-2. 水油型奈米液滴系統的物化性質………………………………34 2-3. 模式藥(Aminophylline)物化性質之測定……………………35 2-4. 以界面聚合反應製備奈米膠囊…….…………………………...43 2-5. 奈米膠囊產率的計算……………………………………………45 2-6. 奈米膠囊藥物包覆率和載藥能力之測量………………………45 2-7. 奈米膠囊的物化特性……………………………………………53 2-8. 含藥奈米膠囊之藥物釋放試驗…………………………………54 肆、結果與討論…………………………………………………………………56 1. 水油型奈米液滴系統之製備…………………………………………56 1-1. 水油型奈米液滴系統之各項組成比例…………………………56 1-2. 水油型奈米液滴系統之性質……………………………………58 2. 奈米膠囊之製備………………………………………………………60 2-1. 聚合反應所用單體量之決定……………………………………62 2-2. 奈米膠囊之產率…………………………………………………63 3. 含藥奈米膠囊之製備…………………………………………………64 3-1. 影響奈米膠囊藥物包覆率的因素探討…………………………64 3-2. 影響奈米膠囊載藥能力的因素探討……………………………74 4. 奈米膠囊之性質探討…………………………………………………75 4-1. 傅利葉轉換紅外線光譜測定……………………………………75 4-2. 示差掃瞄熱分析儀之測定………………………………………81 4-3. 奈米膠囊之粒徑與型態分析……………………………………84 5. 含藥奈米膠囊之藥物釋離研究………………………………………89 5-1. 製劑上之變因對PECA奈米膠囊藥物釋離之影響……………90 5-2. 溶離液的酸鹼度對PECA奈米膠囊藥物釋離之影響…………96 5-3. 釋離模式的探討………………………………………………..100 伍、結論……………………………………………………………………….106 參考文獻............................................................................................................109 | |
dc.language.iso | zh-TW | |
dc.title | 含水核之奈米膠囊的製備與其體外釋離之研究 | zh_TW |
dc.title | Preparation and In-Vitro Release Profiles of Nanocapsules Containing an Aqueous Core | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蔡瑞瑩,廖嘉鴻 | |
dc.subject.keyword | 奈米膠囊, | zh_TW |
dc.subject.keyword | Nanocapsules, | en |
dc.relation.page | 118 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-25 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 藥學研究所 | zh_TW |
顯示於系所單位: | 藥學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 964.62 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。