請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36126
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 莊榮輝(Rong-Huay Juang) | |
dc.contributor.author | Yu-Ching Tsai | en |
dc.contributor.author | 蔡雨靜 | zh_TW |
dc.date.accessioned | 2021-06-13T07:51:55Z | - |
dc.date.available | 2010-07-30 | |
dc.date.copyright | 2005-07-30 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-25 | |
dc.identifier.citation | 林維治 (1994) 林維治先生竹類論文集。林業叢刊第69號,張添榮主編,台灣省林業試驗所,pp.35-55
Adams P, Nelson DE, Yamada S Chmara W, Jensen RG, Bohnert HJ, Griffiths H. (1998) Growth and development of Mesembryanthemum crystallinum (Aizoaceae). New Phytol 138: 171-190 Amador V, Monte E, Garcia-Martinez JL, Prat S. (2001) Gibberellins signal nuclear import of PHOR1, a photoperiod-responsive protein with homology to Drosophila armadillo. Cell 106: 343-354. Arrigoni O, de Tullio MC. (2000) The role of ascorbic acid in cell metabolism: Between gene- directed functions and unpredictable chemical reactions. J Plant Physiol 157: 481-488. Blazquez MA. (2000) Flower development pathways.J Cell Sci 113: 3547-3548. Blazquez MA, Green R, Nilsson O, Sussman MR, Weigel D. (1998) Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. Plant Cell 10: 791-800. Caughey I, Kekwick RGO. (1982) The characteristics of some components of the fatty-acid synthetase system in the plastids from the mesocrap of avocado (Persea americana) fruit. Eur J Biochem 123: 553-561. Caspar T, Huber SC, Somerville C. (1985) Alterations in growth, photosynthesis, and respiration in a starchless mutant of Arabidopsis thaliana (L.) Heynh deficient in chloroplast phosphoglucomutase activity. Plant Physiol 79: 1-7. Caspar T, Lin TP, Kakefuda G, Benbow L, Preiss J, Somerville C. (1991) Mutants of Arabidopsis with altered regulation of starch degradation. Plant Physiol 95: 1181-1188. Coronado C, Zuanazzi JAS, Sallaud C, Quirion JC, Esnault R, Husson HP, Kondorosi A, Ratet P. (1995) Alfalfa root flavonoid production is nitrogen regulated. Plant Physiol 108: 533-542. Dormann P, Voelker TA, Ohlrogge JB. (2000) Accumulation of palmitate in Arabidopsis mediated by the acyl-acyl carrier protein thioesterase FATB1. Plant Physiol 123: 637-643. Gendall AR, Levy YY, Wilson A, Dean C. (2001) The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell 107: 525-535. Giavalisco P, Nordhoff E, Lehrach H, Gobom J, Klose J. (2003) Extraction of proteins from plant tissues for two-dimensional electrophoresis analysis. Electrophoresis 24: 207-216. Goto K and Meyerowitz EM. (1994) Function and regulation of the Arabidopsis floral homeotic gene pistillata. Genes Dev 8: 1548-1560. Hayama R, Coupland G. (2003) Shedding light on the circadian clock and the photoperiodic control of flowering. Curr Opin Plant Biol 6: 13-19. Hayama R, Izawa T, Shimamoto K. (2002) Isolation of rice genes possibly involved in the photoperiodic control of flowering by a fluorescent differential display method. Plant Cell Physiol 43: 494-504. Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K. (2003) Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422: 719-722. He Y, Michaels SD, Amasino RM. (2003) Regulation of flowering time by histone acetylation in Arabidopsis. Science 302: 1751-1754. Hell R, Jost R, Berkowitz O, Writz M. (2002) Molecular and biochemical analysis of the emzymes of cysteine biosythesis in the plant Arabidopsis thaliana. Amino Acids 22: 245-257. Hofmann B, Hecht HJ, Flohe L. (2002) Peroxiredoxins. Biol Chem 383: 347-64. Hoj PB, Mikkelsen JD. (1982) Partial separation of individual enzyme-activities of an ACP-dependant fatty-acid synthetase from barley chloroplasts. Carlseberg Res Commun 47: 119-141. Huang, L. C., B. L. Huang, and W. L. Chen. (1989). Tissue culture investigations of bamboo IV. Organogenesis leading to adventitious shoots and plants in excised shoot apices. Environmental and Experimental Botany 29: 307-315. Hunter T. (2000) Signaling-2000 and beyond. Cell 100: 113-127. Imaizumi T, Tran HG, Swartz TE, Briggs WR, Kay SA. (2003) FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature 426: 302-306. Izawa T, Oikawa T, Sugiyama N, Tanisaka T, Yano M, Shimamoto K. (2002) Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Genes Dev 16: 2006-2020. Jack T, Brockman LL, Meyerowitz EM. (1992) The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68: 683-697. Jacobsen SE, Binkowski KA, Olszewski NE. (1996) SPINDLY, a tetratricopeptide repeat protein involved in gibberellin signal transduction in Arabidopsis. Proc Natl Acad Sci USA 93: 9292-9296. Johanson U, West J, Lister C, Michaels S, Amasino R, Dean C. (2000) Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290: 344-347. Kania T, Russenberger D, Peng S ,Apel K, Melzer S. (1997) FPF1 promotes flowering in Arabidopsis. Plant Cell 9: 1327-1338. Kim JY, Song HR, Taylor BL, Carre IA. (2003) Light-regulated transduction mediates gated induction of Arabidopsis clock protein. EMBO J 22: 935-944. Koch KE. (1996) Carbohydrate-modulated gene expression in plant. Annu Rev Plant Physiol Plant Mol Biol 47: 509-540. Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M. (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 43: 1096-1105. Koornneef M, van der Veen JH. (1980) Induction and analysis of gibberellin sensitive mutants in Arabidopsis thaliana (L) Heynh. Theor APPl Genet 58: 257-263. Lan Y, Mott KA. (1991) Determination of apparent Km values for ribulose 1,5-bisphosphate carboxylase oxygenase (Rubisco) activase using the spectrophotometric assay of Rubisco activity. Plant Physiol 95: 604-609 Levy YY, Mesnage S, Mylne JS, Gendall AR, Dean C. (2002) Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control. Science 297: 243-246. Lin TP, Caspar T, Somerville C, Preiss J. (l988) Isolation and characterization of a starchless mutant of Arabidopsis thaliana (L) Henyh lacking ADPglucose pyrophosphoylase activity. Plant Physiol 86: ll3l-ll35 Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky MF. (1992) Molecular characterization of the Arabidopsis floral homeoticgene APETALA1. Nature 360: 273-277. McClure FA. (1966) The bamboos, a fresh perspective. Cambridge, Massachusetts: Harvard University Press. Melzer S, Kampmann G, chandler J, Apel K. (1999) FPF1 modulates the competence to flowering in Arabidopsis. Plant J 19: 395-405. Michaels SD, Ditta G, Gustafson-Brown C, Pelaz S, Yanofsky M, Amasino RM. (2003) AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization. Plant J 33: 867-874. Millar AJ. (2003) A suite of photoreceptors entrains the plant circadian clock. J Biol Rhythms 18: 217-226. Moons A, Gielen J, Vandekerckhove J, van der Straeten D, Gheysen G, van Montagu M. (1997) An abscisic-acid- and salt-stress-responsive rice cDNA from a novel plant gene family. Planta 202: 443-454. Morey KJ, Ortega JL, Sengupta-Gopalan C. (2002) Cytosolic glutamine synthetase in soybean is encoded by a multigene family, and the members are regulated in an organ-specific and development manner. Plant Physiol 128: 182-193. Mouradov A, Cremer F, Coupland G. (2002) Control of flowering time: interacting pathways as a basis for diversity. Plant Cell 14: S111-S130. Noctor G, Foyer CH. (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49: 249-279. Noh YS, Amasino RM. (2003) PIE1, an ISWI family Gene, is required for FLC activation and floral repression in Arabidopsis. Plant Cell 15: 1671-1682. Ohlrogge J, Browse, J. (1995) Lipid biosynthesis. Plant Cell 7: 957-970. Ohto M, Onai K, Furukawa Y, Aoki E, Araki T, Nakamura K. (2001) Effects of sugar on vegetative development and floral transition in Arabidopsis. Plant Physiol. 127: 252-261 Pastori GM, Kiddle G, Antoniw J, Bernard S, Veljovic-Jovanovic S, Verrier PJ, Noctor G, Foyer CH. (2003) Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling. Plant Cell 15: 939-951. Peng JR, Carol P, Richards DE, King KE, Cowling RJ, Murphy GP, Harberd NP. (1997) The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev 11: 3194-3205. Portis AR, Jr. (1990) Rubisco activase. Biochem Biophys Acta 1015: 15-28 Putterill J, Laurie B, Macknight R. (2004) It’s time to flower: the genetic control of flowering time. BioEssays 26: 363-373. Quesada V, Macknight R, Dean C, Simpson GG. (2003) Autoregulation of FCA pre-mRNA processing controls Arabidopsis flowering time. EMBO J 22: 3142-3152. Ratcliffe OJ, Kumimoto RW, Wong BJ, Riechmann JL. (2003) Analysis of the Arabidopsis MADS AFFECTING FLOWERING gene family: MAF2 prevents vernalization by short periods of cold. Plant Cell 15: 1159-1169. Rolland F, Winderickx J, Thevelein JM. (2001) Glucose-sensing mechanisms in eukaryotic cells. Trends Biochem Sci 26: 310-317. Sheldon CC, Conn AB, Dennis ES, Peacock WJ. (2002) Different regulatory regions are required for the vernalization-induced repression of FLOWERING LOCUS C and for the epigenetic maintenance of repression. Plant Cell 14: 2527-2537. Shimakata T, Stumpf PK. (1982) The procaryotic nature of the fatty-acid synthetase of developing Carthamus tinctorius L (safflower) seeds. Arch Biochem Biophys 217: 144-154 Silverstone AL, Jung HS, Dill A, Kawaide H, Kamiya Y, Sun TP. (2001) Repressing a repressor: Gibberellin-induced rapid reduction of the RGA protein in Arabidopsis. Plant Cell 13: 1555-1565. Simpson GG, Dijkwel PP, Quesada V, Henderson I, Dean C. (2003) FY Is an RNA 3' end processing factor that interacts with FCA to control the Arabidopsis floral transition. Cell 113: 777-787. Smirnoff N, Wheeler GL. (2000) Ascorbic acid in plant: Biosynthesis and function. Crit Rev Plant Sci 19: 267-290. Su H, Golldack D, Katsauhara M, Zhao C, Bohnert HJ. (2001) Expression and stress- dependant induction of potassium channel transcripts in the common ice plant. Plant Physiol 125: 604-614. Suarez-Lopez P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G. (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410: 1116-1120. Sugano S, Andronis C, Ong MS, Green RM, Tobin EM. (1999) The protein kinase CK2 is involved in regulation of circadian rhythms in Arabidopsis. Proc Natl Acad Sci USA 96: 12362-12366. Sun TP, Kamiya Y. (1994) The Arabidopsis ga1 locus encodes the cyclase ent-kaurene synthetase-A of gibberellin biosynthesis. Plant Cell 6: 1509-1518. Takahashi Y, Shomura A, Sasaki T, Yano M. (2001) Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the alpha subunit of protein kinase CK2. Proc Natl Acad Sci USA 98: 7922-7927. Tetlow IJ, Wait R, Lu Z, Akkasaeng R, Bowsher CG, Esposito S, Kosar-Hashemi B, Morell MK, Emes MJ. (2004) Protein phosphorylation in amyloplasts regulates starch branching enzyme activity and protein-protein interactions. Plant Cell 16: 694-708. Wen CK, Chang C. (2002) Arabidopsis RGL1 encodes a negative regulator of gibberellin responses. Plant Cell 14: 87-100. Wilson RN, Heckman JW, Somerville CR. (1992) Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol 100: 403-408. Yano M,Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12: 2473-2483. Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM. (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346: 35-39. Yanovsky MJ, Kay SA. (2002) Moleculae basis of seasonal time measurement in Arabidopsis. Nature 419: 308-312. Yu H, Xu YF, Tan EL, Kumar PP. (2002) AGAMOUS-LIKE 24, a dosage-dependent mediator of the flowering signals. Proc Natl Acad Sci USA 99: 16336-16341. Zhou L, Jang JC, Jones TL, Sheen J. (1998) Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucose-insensitive mutant. Proc Natl Acad Sci USA 95: 10294-10299. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36126 | - |
dc.description.abstract | 竹類植物開花後集體死亡的現象,相當令人好奇。為探討這種現象,必須先瞭解造成竹類植物開花的原因。本論文使用試管中綠竹花芽及無性芽作為研究材料,結合二維膠體電泳、抗體免疫染色、電腦軟體比對、螢光標定及質譜分析作為研究工具。經比較綠竹無性芽及花芽,針對差異蛋白質進行成份鑑定後,發現綠竹花芽體內,合成Val、Leu和Ile的相關酵素含量降低,而降解Tyr、合成Gln及Cys的酵素含量提高。此外醣類代謝方面,可得知花芽內參與TCA循環、糖解及光合作用的酵素增加,推測其醣類組成可能改變。還有合成脂肪酸的酵素含量也增加,顯示花芽內部脂肪酸含量上升。另外發現抗氧化、滲透逆境相關之酵素,其含量也在花芽中提高,而這些酵素可能會與植物荷爾蒙結合,調控植物生長發育。上述推測造成綠竹開花的可能原因,均有待進一步研究。 | zh_TW |
dc.description.abstract | The phenomenon of bamboo flowering and the following death is a mystery to plant biologist. In order to explicit this problem in molecular level, we tried to understand the mechanism of bamboo flowering. We used two-dimensional electrophoresis in conjunction with mass spectrometry to dissect the proteome of flower buds and basal shoot clumps of Bambusa oldhamii which were cultivated in vitro. Proteomic tools including two-dimensional electrophoresis, immunoblotting, computer software comparing, CyDye tagging and mass spectrometric analysis were used to identify the key proteins related to the flowering mechanism. It is observed the expression of the enzymes responsible for amino acids, carbohydrates and fatty acids metabolism were changed. The increase of these proteins could result in flux toward glycolysis, TCA cycle, photosynthesis and fatty acid synthesis. Besides, we have identified some enzymes related to antioxidation osmotic stress which might regulate plant growth by co-regulating with the phytohormones in flower buds. All these observations should be confirmed in further studies. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T07:51:55Z (GMT). No. of bitstreams: 1 ntu-94-R92b47204-1.pdf: 7626811 bytes, checksum: 98d1123456d9edbd9004811c0895ab24 (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 目錄 II
中文摘要 IV 英文摘要 V 縮寫表 VI 第一章 前 言 1 1.1竹 1 1.1.1分布 1 1.1.2型態 1 1.1.3獨特的生理現象 2 1.1.4應用與經濟價值 2 1.2植物開花生理 4 1.2.1光週期因素 4 1.2.2溫度因素 6 1.2.3營養因素 6 1.2.4荷爾蒙因素 6 1.2.5自發性反應 7 1.2.6花器形成與發育 7 1.3蛋白質體學 (PROTEOMICS) 9 1.3.1歷史與發展 9 1.3.2二維膠體電泳 9 1.3.3質譜分析 10 1.3.4生物資訊學 10 1.3.5應用 11 1.4研究動機 12 第二章 材料與方法 13 2.1綠竹樣本製備 13 2.1.1綠竹試管中樣本培養 13 2.1.2綠竹樣本處理 13 2.2樣品萃取法 14 2.3一般化學分析法 16 2.3.1一般樣本蛋白質定量法 16 2.3.2二維膠體電泳樣本蛋白質定量法 17 2.4電泳檢定法 18 2.4.1原態膠體電泳 (native-PAGE) 18 2.4.2 SDS膠體電泳 21 2.4.3二次元雙向電泳 (2-dimensional electrophoresis, 2DE) 23 2.4.4蛋白質轉印法: 27 2.4.5膠體染色法 28 2.4.6膠片乾燥法 30 2.5螢光標定二維膠體電泳法 31 2.6膠體內蛋白脢水解 (IN GEL DIGESTION) 33 2.7酵素免疫染色法 34 第三章 結果與討論 37 3.1試管中及野生綠竹樣本分析 37 3.1.1試管中綠竹樣本電泳分析 37 3.1.2野生綠竹樣本二維膠體電泳分析 42 3.1.3試管中與野生綠竹花芽樣本比較 42 3.1.4試管中綠竹樣本二維膠體電泳圖譜建立 42 3.2綠竹無性芽及花芽差異性比較 47 3.2.1免疫染色 47 3.2.2電腦軟體分析二維膠體電泳圖 47 3.2.3螢光標定 48 3.3確定差異蛋白質身份 53 3.3.1質譜分析 53 3.4差異蛋白質身分整理與討論 55 3.4.1胺基酸代謝 55 3.4.2光合作用與醣類代謝 55 3.4.3脂肪酸代謝 56 3.4.4逆境相關 57 3.4.5其他 58 第四章 總 結 66 參考文獻: 67 | |
dc.language.iso | zh-TW | |
dc.title | 綠竹無性芽及花芽之蛋白質體分析 | zh_TW |
dc.title | Proteomic Analysis of Basal Shoot Clumps and Flower Buds of Bambusa oldhamii | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 黃麗春(Li-Chun Huang) | |
dc.contributor.oralexamcommittee | 黃鵬林(Peng-Lin Huang),楊健志(Chian-Chi Yang),陳翰民(Han-Min Chen) | |
dc.subject.keyword | 綠竹,開花,蛋白質體, | zh_TW |
dc.subject.keyword | Bambusa oldhamii,flowering,proteome, | en |
dc.relation.page | 70 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-25 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 微生物與生化學研究所 | zh_TW |
顯示於系所單位: | 微生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 7.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。