Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35277
Title: 以商品驅動之推薦方法
Item-triggered Recommendation
Authors: Koung-Lung Lin
林光龍
Advisor: 許永真(Jane Yung-jen Hsu)
Co-Advisor: 歐陽彥正(Yen-jen Oyang)
Keyword: 推薦系統,支撐向量機,普適提演算法,稀少類別分類,商品驅動,消費者驅動,未請求商品,
recommender system,support vector machine,boosting algorithm,rare class classification,item-triggered,customer-triggered,unsought product,
Publication Year : 2005
Degree: 博士
Abstract: Recommendation research has achieved successful results in many application areas. However, for supermarkets, since the transaction data is extremely skewed in the sense that a large portion of sales is concentrated in a small number of best selling items, collaborative filtering based customer-triggered recommenders usually recommend hot sellers while rarely recommend cold sellers. But recommenders are supposed to provide better campaigns for cold sellers to increase sales.
In this thesis, we propose an alternative ``item-triggered' recommendation to identify potential customers for cold sellers. In item-triggered recommendation, the recommender system will return a ranked list of customers who are willing to buy a given item. This problem can be formulated as a problem of classifier learning, but due to the skewed distribution of the transaction data, we need to solve the rare class problem, where the number of negative examples is much larger than the positive ones. We present a boosting algorithm to train an ensemble of SVM classifiers to solve the rare class problem and compare the algorithm with its variants. We apply our algorithm to a real-world supermarket database and use the area under the ROC curve (AUC) metric to evaluate the quality of the output ranked lists. Experimental results show that our algorithm can improve from a baseline approach by about twenty-three percent in terms of the AUC metric for cold sellers which is as low as 0.64\% of customers have ever purchased.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35277
Fulltext Rights: 有償授權
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-94-1.pdf
  Restricted Access
4.99 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved