Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35277
標題: 以商品驅動之推薦方法
Item-triggered Recommendation
作者: Koung-Lung Lin
林光龍
指導教授: 許永真(Jane Yung-jen Hsu)
共同指導教授: 歐陽彥正(Yen-jen Oyang)
關鍵字: 推薦系統,支撐向量機,普適提演算法,稀少類別分類,商品驅動,消費者驅動,未請求商品,
recommender system,support vector machine,boosting algorithm,rare class classification,item-triggered,customer-triggered,unsought product,
出版年 : 2005
學位: 博士
摘要: Recommendation research has achieved successful results in many application areas. However, for supermarkets, since the transaction data is extremely skewed in the sense that a large portion of sales is concentrated in a small number of best selling items, collaborative filtering based customer-triggered recommenders usually recommend hot sellers while rarely recommend cold sellers. But recommenders are supposed to provide better campaigns for cold sellers to increase sales.
In this thesis, we propose an alternative ``item-triggered' recommendation to identify potential customers for cold sellers. In item-triggered recommendation, the recommender system will return a ranked list of customers who are willing to buy a given item. This problem can be formulated as a problem of classifier learning, but due to the skewed distribution of the transaction data, we need to solve the rare class problem, where the number of negative examples is much larger than the positive ones. We present a boosting algorithm to train an ensemble of SVM classifiers to solve the rare class problem and compare the algorithm with its variants. We apply our algorithm to a real-world supermarket database and use the area under the ROC curve (AUC) metric to evaluate the quality of the output ranked lists. Experimental results show that our algorithm can improve from a baseline approach by about twenty-three percent in terms of the AUC metric for cold sellers which is as low as 0.64\% of customers have ever purchased.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35277
全文授權: 有償授權
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
4.99 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved