Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34819
標題: 以延遲相關方式探討二維狀態延遲系統之強健濾波與控制問題
Robust Filtering and Control of 2-D State-Delayed Systems:
A Delay-Dependent Approach
作者: Shyh-Feng Chen
陳世豐
指導教授: 馮蟻剛(I-Kong Fong)
關鍵字: 二維系統,延遲系統,線性矩陣不等式,強健穩定性,強健濾波器,狀態回授,
Two-dimensional systems,time-delay,linear matrix inequality,robust stability,robust filter,state feedback,
出版年 : 2006
學位: 博士
摘要: 本論文主要以延遲相關方式探討二維狀態延遲系統的強健濾波和控制問題。一個系統的動態行為若受到兩個獨立整數變數i 和j 影響,則稱此系統為二維系統。二維信號和系統經常被廣泛應用在影像處理、數位信號處理和程序控制方面,因此二維系統的研究近年來逐漸受到重視。二維系統中的特例,二維狀態延遲系統,常見於許多實際應用中,譬如物質輾壓過程、偏差分方程式、圖像資料處理和傳輸等方面。因此,二維狀態延遲系統的分析和設計問題成為值得研究的課題。本研究的分析和設計是採用線性矩陣不等式的架構。
首先,本論文探討二維狀態延遲系統的漸進穩定性,利用線性矩陣不等式的推導技術,得出一個充分穩定性條件,此條件與水平和垂直方向延遲大小有關。其次,提出具延遲相關的H∞ 和H2 性能準則。然後利用該準則發展出一套解決強健H∞,H2 與混合H∞/ H2 濾波器的設計方法。有別於傳統的相關研究,本論文針對整個參數不確定性空間多面體的不同頂點,採用不同的李雅普諾夫矩陣設計強健濾波器,此種設計方法可得到較不保守的設計結果。
最後,本論文針對二維狀態延遲系統,探討狀態回授控制器的設計問題。為了使整個設計過程建立在線性矩陣不等式的架構上,另外推導出延遲相關之強健穩定性條件,然後利用此條件發展出強健穩定化方法,找出一個狀態回授控制器使得整個閉迴路系統不只強健穩定,且不受系統參數不確定性影響。
This dissertation studies the robust filtering and control problems for two-dimensional (2-D) state-delayed systems in the Fornasini-Marchesini second model by using a delay-dependent approach. A 2-D system is one that has dynamics depending on two independent integer variables i and j. 2-D signals and systems
have become more and more important in the fields like image processing, digital signal
processing, and process control. The study of 2-D systems has attracted increasing attentions in recent years. A particular case
of 2-D systems, 2-D state-delayed systems, can be found in many
practical applications such as the material rolling process, partial
difference equation modeling, and image data processing/transmission. Thus the
analysis and synthesis of 2-D state-delayed systems are
worthwhile investigation issues. The main focus of this research is the use of
linear matrix inequality (LMI) techniques for both analysis and
synthesis problems.
Firstly, a computationally tractable
sufficient condition for the asymptotic stability of 2-D state-delayed systems, which depend on the
size of delays in both horizontal and vertical directions, are
derived in terms of LMIs. Then, delay-dependent H-infinity performance and H-2 performance criteria are proposed. Based on the results,
efficient methods to solve the robust H-infinity filtering,
H-2 filtering, and mixed H-2/H-infinity
filtering problems are developed. Differently from the quadratic stability
framework, the filter design methods in this dissertation adopt the parameter-dependent
Lyapunov function approach, which utilizes different Lyapunov matrices
in the entire polytope domain and produces less
conservative design results.
Finally, the state feedback controller synthesis problem for the system is also considered.
A new delay-dependent robust stability condition is derived,
and used to develop a robust stabilization method. The goal is to find a state feedback controller
such that the closed-loop system is robustly stable for all
admissible uncertainties.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34819
全文授權: 有償授權
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
714.02 kBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved