Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34819
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor馮蟻剛(I-Kong Fong)
dc.contributor.authorShyh-Feng Chenen
dc.contributor.author陳世豐zh_TW
dc.date.accessioned2021-06-13T06:35:07Z-
dc.date.available2006-01-26
dc.date.copyright2006-01-26
dc.date.issued2006
dc.date.submitted2006-01-16
dc.identifier.citation[1] P. Agathoklis, E. I. Jury, , and M. Mansour, 'The discrete-time strictly bounded-
real lemma and the computation of positive definite solutions to the 2-D Lya-
punov equation,' IEEE Trans. Circuits Syst., vol. 36, pp. 830-837, 1989.
[2] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities
in System and Control Theory. Philadelphia, PA: SIAM, 1994.
[3] Y. Y. Cao, Y. X. Sun, , and C. Cheng, 'Delay-dependent robust stabilization of
uncertain systems with multiple state delays,' IEEE Trans. Automat. Control,
vol. 43, pp. 1608-1611, 1998.
[4] C. W. Chen, J. S. H. Tsai, and L. S. Shieh, 'Modeling and solution of two-
dimensional input time-delay system,' J. Franklin Inst., vol. 337, pp. 569-578,
2002.
[5] S. F. Chen and I. K. Fong, 'Robust H-infinity control of 2-D discrete state-delayed sys-
tems,' in Proc. 5th IFAC Workshop on Time-Delay Systems, Leuven, Belgium,
2004.
[6] _, 'Robust filtering for 2-D state-delayed systems with NFT uncertainties,'
IEEE Trans. Signal Processing, vol. 54, pp. 274-285, 2006.
[7] C. E. de Souza and X. Li, 'Delay-dependent robust H-infinity control of uncertain
linear state-delayed systems,' Automatica, vol. 35, pp. 1313-1321, 1999.
[8] C. Du and L. Xie, 'LMI approach to output feedback stabilization of 2-D discrete
systems,' Int. J. Control, vol. 72, pp. 97-106, 1999.
[9] _, 'Stability analysis and stabilization of uncertain two-dimensional discrete
systems: An LMI approach,' IEEE Trans. Circuits Syst. I, vol. 46, pp. 1371-
1374, 1999.
[10] _, 'H-infinity control and robust stabilization of two-dimensional systems in Roesser
models,' Automatica, vol. 37, pp. 205-211, 2001.
[11] _, H-infinity Control and Filtering of Two-dimensional Systems, ser. Lecture Notes
in Control and Information Scences. Berlin, Germany: Springer-Verlag, 2002,
vol. 278.
[12] C. Du, L. Xie, and Y. C. Soh, 'H-infinity reduced-order approximation of 2-D digital
filters,' IEEE Trans. Circuits Syst. I, vol. 48, pp. 688-698, 2001.
[13] C. Du, L. Xie, and C. Zhang, 'Solution for H-infinity filtering of two-dimensional
systems,' Multidim. Syst. Signal Processing, vol. 11, pp. 301-320, 2000.
[14] L. Dugard and E. I. Verriest, Stability and Control of Time-delay Systems, ser.
Lecture Notes in Control and Information Scences. London: Springer-Verlag,
1998, vol. 228.
[15] E. Fornasini and G. Marchesini, 'Doubly indexed dynamical systems, state-space
models and structural properties,' Mathematical System Theory, vol. 12, pp. 59-
72, 1978.
[16] E. Fridman and U. Shaked, 'A new H-infinity filter design for linear time delay sys-
tems,' IEEE Trans. Signal Processing, vol. 49, p. 2839-2843, 2001.
[17] P. Gahinet and P. Apkarian, 'A linear matrix inequality approach to H-infinity con-
trol,' Int. J. Robust Nonlinear Contr., vol. 4, pp. 421-448, 1994.
[18] P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali, LMI Control Toolbox For
Use with MATLAB. Natick, MA: The MathWorks Inc., 1995.
[19] H. Gao and C. Wang, 'Robust L-2-L-infinity filtering for uncertain systems with
multiple time-varying state delays,' IEEE Trans. Circuits Syst. I, vol. 50, p.
594-599, 2003.
[20] _, 'A delay-dependent approach to robust H-infinity filtering for uncertain discrete-
time state-delayed systems,' IEEE Trans. Signal Processing, vol. 52, pp. 1631-
1640, 2004.
[21] J. C. Geromel, M. C. de Oliveira, and J. Bernussou, 'Robust filtering of discrete-
time linear systems with parameter dependent Lyapunov functions,' SIAM J.
Control Optim., vol. 41, pp. 700-711, 2002.
[22] X. Guan, C. Long, and G. Duan, 'Robust optimal guaranteed cost control for
2D discrete systems,' IEE Proc., Control Theory Appl., vol. 148, pp. 355-361,
2001.
[23] T. Hinamoto, 'On a Lyapunov approach to stability analysis of 2-D digital filters,' IEEE Trans. Circuits Syst. I, vol. 41, pp. 665{669, 1994.
[24] _, 'Stability of 2-D discrete systems described by the Fornasini-Marchesini
second model,' IEEE Trans. Circuits Syst. I, vol. 44, pp. 254-257, 1997.
[25] J. Huang, G. Lu, and X. Zou, 'Existence of traveling wave fronts of delayed
lattice differential equations,' J. Math. Anal. Appl., vol. 298, pp. 538-558, 2004.
[26] T. Kaczorek, Two-Dimensional Linear Systems, ser. Lecture Notes in Control
and Information Scences. Berlin, Germany: Springer-Verlag, 1985, vol. 68.
[27] H. Kar and V. Singh, 'Stability of 2-D systems described by the Fornasini-
Marchesini first model,' IEEE Trans. Signal Processing, vol. 51, pp. 1675-1676,
2003.
[28] X. Li and C. E. de Souza, 'Delay-dependent robust stability and stabilization
of uncertain linear delay systems: A linear matrix inequality approach,' IEEE
Trans. Automat. Control, vol. 42, pp. 1144-1148, 1997.
[29] W. S. Lu and A. Antoniou, Two-Dimensional Digital Filters. New York, NY:
Marcel Dekker, Inc., 1992, vol. 68.
[30] W. S. Lu and E. B. Lee, 'Stability analysis for two-dimensional systems,' IEEE
Trans. Circuits Syst., vol. 30, pp. 455-461, 1983.
[31] J. B. M. C. de Oliveira and J. C. Geromel, 'A new discrete-time robust stability
condition,' Syst. Contr. Lett., vol. 37, p. 261-265, 1999.
[32] J. C. G. M. C. de Oliveira and J. Bernussou, 'Extended H-2 and H-infinity norm
characterizations and controller parametrizations for discretetime systems,' Int.
J. Control, vol. 75, p. 666-679, 2002.
[33] M. S. Mahmoud, Robust Control and Filtering for Time-delay Systems. New
York, NY: Marcel Dekker, Inc., 2000.
[34] Y. S. Moon, P. Park, W. H. Kwon, and Y. S. Lee, 'Delay-dependent robust
stabilization of uncertain state-delayed systems,' Int. J. Control, vol. 74, pp.
1447-1455, 2001.
[35] T. Ooba, 'Matrix conditions for the stability of 2-D dynamics,' Circuits Syst.
Signal Process, vol. 19, pp. 187{196, 2000.
[36] _, 'On stability analysis of 2-D systems based on 2-D Lyapunov matrix inequalities,' IEEE Trans. Circuits Syst. I, vol. 47, pp. 1263-1265, 2000.
[37] R. M. Palhares, C. D. Campos, P. Y. Ekel, M. C. R. Leles, and M. F. S. V.
D'Angelo, 'Delay-dependent robust H-infinity control of uncertain linear systems with
lumped delays,' IEE Proc. Control Theory Appl., vol. 152, pp. 27-33, 2005.
[38] R. M. Palhares, C. E. D. Souza, , and P. L. D. Peres, 'Robust H1 ‾ltering for
uncertain discrete-time state-delayed systems,' IEEE Trans. Signal Processing,
vol. 49, pp. 1696-1703, 2001.
[39] W. Paszke, J. Lam, K. GaÃlkowski, S. Xu, and Z. Lin, 'Robust stability and
stabilization of 2-D discrete state-delayed systems,' Syst. Contr. Lett., vol. 51,
pp. 277-291, 2004.
[40] W. Paszke, J. Lam, K. GaÃlkowski, S. Xu, and E. Rogers, 'H-infinity control of 2D linear
state-delayed systems,' in Proc. 4th IFAC Workshop on Time-Delay Systems,
Rocquencourt, France, 2003.
[41] R. P. Roesser, 'A discrete state-space model for linear image processing,' IEEE
Trans. Automat. Control, vol. 20, pp. 1-10, 1975.
[42] E. Rogers and a. D. H. O. K. GaÃlkowski, 'Delay differential control theory applied
to differential linear repetitive processes,' in Proc. American Control Conference,
Anchorage, AK, May 2002.
[43] K. Sun and A. Packard, Robust H-2 and H-infinity filters for uncertain LFT systems,'
IEEE Trans. Autom. Control, vol. 50, pp. 715-720, 2005.
[44] H. Trinh and T. Fernando, 'Some new stability conditions for two-dimensional
difference systems,' Int. J. Syst. Sci., vol. 31, pp. 203-211, 2000.
[45] H. D. Tuan, P. Apkarian, T. Q. Nguyen, and T. Narikiyo, 'Robust mixed H-2/H-infinity
filtering of 2-D systems,' IEEE Trans. Signal Processing, vol. 50, pp. 1759-1771,
2002.
[46] Z.Wang and F. Yang, 'Robust filtering for uncertain linear systems with delayed
states and outputs,' IEEE Trans. Circuits Syst. I, vol. 49, p. 125-130, 2002.
[47] L. Xie, C. Du, Y. Chaisoh, and C. Zhang, ' H-infinity and robust control of 2-D systems
in FM second model,' Multidim. Syst. Signal Processing, vol. 13, pp. 265-287,
2002.
[48] L. Xie, C. Du, C. Zhang, and Y. C. Soh, 'H-infinity deconvolution filtering of 2-D
digital systems,' IEEE Trans. Signal Processing, vol. 50, pp. 2319-2331, 2002.
[49] S. Xu, J. Lam, Z. Lin, and K. GaÃlkowski, 'Positive real control for uncertain
two-dimensional systems,' IEEE Trans. Circuits Syst. I, vol. 49, pp. 1659-1666,
2002.
[50] B. G. Zhang and C. J. Tian, 'Stability criteria for a class of linear delay partial
di®erence equations,' Computers and Math. with Appl., vol. 38, pp. 37-43, 1999.
[51] _, 'Oscillation criteria of a class of partial difference equations with delays,'
Computers and Math. with Appl., vol. 48, pp. 291-303, 2004.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34819-
dc.description.abstract本論文主要以延遲相關方式探討二維狀態延遲系統的強健濾波和控制問題。一個系統的動態行為若受到兩個獨立整數變數i 和j 影響,則稱此系統為二維系統。二維信號和系統經常被廣泛應用在影像處理、數位信號處理和程序控制方面,因此二維系統的研究近年來逐漸受到重視。二維系統中的特例,二維狀態延遲系統,常見於許多實際應用中,譬如物質輾壓過程、偏差分方程式、圖像資料處理和傳輸等方面。因此,二維狀態延遲系統的分析和設計問題成為值得研究的課題。本研究的分析和設計是採用線性矩陣不等式的架構。
首先,本論文探討二維狀態延遲系統的漸進穩定性,利用線性矩陣不等式的推導技術,得出一個充分穩定性條件,此條件與水平和垂直方向延遲大小有關。其次,提出具延遲相關的H∞ 和H2 性能準則。然後利用該準則發展出一套解決強健H∞,H2 與混合H∞/ H2 濾波器的設計方法。有別於傳統的相關研究,本論文針對整個參數不確定性空間多面體的不同頂點,採用不同的李雅普諾夫矩陣設計強健濾波器,此種設計方法可得到較不保守的設計結果。
最後,本論文針對二維狀態延遲系統,探討狀態回授控制器的設計問題。為了使整個設計過程建立在線性矩陣不等式的架構上,另外推導出延遲相關之強健穩定性條件,然後利用此條件發展出強健穩定化方法,找出一個狀態回授控制器使得整個閉迴路系統不只強健穩定,且不受系統參數不確定性影響。
zh_TW
dc.description.abstractThis dissertation studies the robust filtering and control problems for two-dimensional (2-D) state-delayed systems in the Fornasini-Marchesini second model by using a delay-dependent approach. A 2-D system is one that has dynamics depending on two independent integer variables i and j. 2-D signals and systems
have become more and more important in the fields like image processing, digital signal
processing, and process control. The study of 2-D systems has attracted increasing attentions in recent years. A particular case
of 2-D systems, 2-D state-delayed systems, can be found in many
practical applications such as the material rolling process, partial
difference equation modeling, and image data processing/transmission. Thus the
analysis and synthesis of 2-D state-delayed systems are
worthwhile investigation issues. The main focus of this research is the use of
linear matrix inequality (LMI) techniques for both analysis and
synthesis problems.
Firstly, a computationally tractable
sufficient condition for the asymptotic stability of 2-D state-delayed systems, which depend on the
size of delays in both horizontal and vertical directions, are
derived in terms of LMIs. Then, delay-dependent H-infinity performance and H-2 performance criteria are proposed. Based on the results,
efficient methods to solve the robust H-infinity filtering,
H-2 filtering, and mixed H-2/H-infinity
filtering problems are developed. Differently from the quadratic stability
framework, the filter design methods in this dissertation adopt the parameter-dependent
Lyapunov function approach, which utilizes different Lyapunov matrices
in the entire polytope domain and produces less
conservative design results.
Finally, the state feedback controller synthesis problem for the system is also considered.
A new delay-dependent robust stability condition is derived,
and used to develop a robust stabilization method. The goal is to find a state feedback controller
such that the closed-loop system is robustly stable for all
admissible uncertainties.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:35:07Z (GMT). No. of bitstreams: 1
ntu-95-D89921015-1.pdf: 731159 bytes, checksum: a71b75b55adc3c81c9a7da8fdf8be22e (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents1 Introduction 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . 5
2 The Stability Analysis of 2-D State-Delayed Systems 6
2.1 Overview of the Stability of 2-D Systems . . . . . . . . . . . . . . . . 7
2.1.1 State-Space Models . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Stability of 2-D Systems . . . . . . . . . . . . . . . . . . . . . 8
2.2 Stability of 2-D State-Delayed Systems . . . . . . . . . . . . . . . . . 9
2.2.1 State-Space Models of 2-D State-Delayed Systems . . . . . . . 9
2.2.2 Stability of 2-D State-Delayed Systems . . . . . . . . . . . . . 10
2.2.3 Delay-Dependent Stability Analysis of 2-D State-Delayed Systems 11
2.2.4 A Numerical Example . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3 H-infinity and H-2 Performance of 2-D State-Delayed Systems 17
3.1 H-infinity Performance of 2-D state-delayed system . . . . . . . . . . . . . . 18
3.1.1 Basic H-infinity Performance . . . . . . . . . . . . . . . . . . . . . . 18
3.1.2 Delay-Dependent H-infinity Performance . . . . . . . . . . . . . . . 20
3.1.3 A Numerical Example . . . . . . . . . . . . . . . . . . . . . . 25
3.2 H-2 Performance of 2-D State-Delayed Systems . . . . . . . . . . . . . 27
3.2.1 Basic H-2 Performance . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Delay-Dependent H-2 Performance . . . . . . . . . . . . . . . . 28
3.2.3 A Numerical Example . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4 A Delay-Dependent Approach to Robust Filter Design of 2-D State-
Delayed Polytopic Systems 35
4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Robust H-infinity Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.1 Robust H-infinity Filter Analysis . . . . . . . . . . . . . . . . . . . . 39
4.2.2 Robust H-infinity Filter Design . . . . . . . . . . . . . . . . . . . . . 40
4.2.3 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Robust H-2 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.1 Robust H-2 Filter Analysis . . . . . . . . . . . . . . . . . . . . 52
4.3.2 Robust H-2 Filter Design . . . . . . . . . . . . . . . . . . . . . 53
4.3.3 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . 57
4.4 Robust Mixed H-2/H-infinity Filtering . . . . . . . . . . . . . . . . . . . . . 58
4.4.1 Robust Mixed H-2/H-infinity Filter Design . . . . . . . . . . . . . . 59
4.4.2 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . 59
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5 A Delay-Dependent Approach to Robust Stability and Stabilization
of 2-D State-Delayed Systems 61
5.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2 Robust Stability and Stabilization . . . . . . . . . . . . . . . . . . . . 63
5.2.1 Robust Stability Analysis . . . . . . . . . . . . . . . . . . . . 64
5.2.2 Robust Stabilization . . . . . . . . . . . . . . . . . . . . . . . 72
5.2.3 A Numerical Example . . . . . . . . . . . . . . . . . . . . . . 74
5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6 Conclusions and Suggestions for Future Study 78
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2 Suggestions for Future Study . . . . . . . . . . . . . . . . . . . . . . . 79
Bibliography 81
dc.language.isoen
dc.subject強健濾波器zh_TW
dc.subject二維系統zh_TW
dc.subject延遲系統zh_TW
dc.subject線性矩陣不等式zh_TW
dc.subject強健穩定性zh_TW
dc.subject狀態回授zh_TW
dc.subjectrobust stabilityen
dc.subjectlinear matrix inequalityen
dc.subjectstate feedbacken
dc.subjectrobust filteren
dc.subjecttime-delayen
dc.subjectTwo-dimensional systemsen
dc.title以延遲相關方式探討二維狀態延遲系統之強健濾波與控制問題zh_TW
dc.titleRobust Filtering and Control of 2-D State-Delayed Systems:
A Delay-Dependent Approach
en
dc.typeThesis
dc.date.schoolyear94-1
dc.description.degree博士
dc.contributor.oralexamcommittee張帆人(Fan-Ren Chang),蔡聖鴻,周至宏,許新添,李立
dc.subject.keyword二維系統,延遲系統,線性矩陣不等式,強健穩定性,強健濾波器,狀態回授,zh_TW
dc.subject.keywordTwo-dimensional systems,time-delay,linear matrix inequality,robust stability,robust filter,state feedback,en
dc.relation.page86
dc.rights.note有償授權
dc.date.accepted2006-01-17
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
714.02 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved