請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34709
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 曾惠斌 | |
dc.contributor.author | Hsiao-An Li | en |
dc.contributor.author | 李孝安 | zh_TW |
dc.date.accessioned | 2021-06-13T06:23:59Z | - |
dc.date.available | 2007-01-26 | |
dc.date.copyright | 2006-01-26 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-01-23 | |
dc.identifier.citation | E1. Ballard, G., and Howell, G. (1994). “Implementing lean construction: Stabilizing work flow.” Proc., 2nd Annual Conf. of the Int. Group for Lean Construction, Santiago, Chile.
E2. Ballard, G., and Howell, G. (1998). “Shielding production: Essential step in production control.” J. Constr. Eng. Manage., ASCE, 124(1), 11-17. E3. Banerjee, A., and Banerjee , S. (1992). “Coordinated, orderless inventory replenishment for a single supplier and multiple buyers through electronic data exchange.” Int. J. of Technology Management, 7, 328-336. E4. Bertelsen, S. (1995). “Building logistics: A means for improvement of productivity in the building sector.” Nelleman, Nielsen & Rauschenberger A/S Consulting Engineers and Planners, Copenhagen, Denmark. E5. Bowersox, D. J. and Closs, D.J., (1996), “Logistical Management- The Integrated Supply Chain Process”, McGraw-Hill Inc., New York. E6. Brailsford, S. C., Potts, C. N., and Smith, B. M. (1999). “Constraint satisfaction problems: Algorithms and applications.” European Journal of Operational Research, 119, 557-581. E7. Castro-Lacouture, D. and Skibniewski, M. J. (2003). “Applicability of e-Work models for automation of construction materials management systems.” Production Planning & Control, Taylor & Francis Publishers, Vol. 14 No. 8, 789-797. E8. Chan W. T., and Hu, H. (2002). “Production scheduling for pre-cast plants using a flow shop sequencing model.” J. of Computing in Civil Engineering, 16:3, 165-174. E9. Chan W. T., and Hu, H. (2002). “Constraint programming approach to pre-cast production scheduling.” J. Constr. Eng. Manage., ASCE, 128(6), 513-520. E10. Chopra, S., and Meindl, P. (2001). “Supply Chain Management - Strategy, Planning, and Operation.” Prentice Hall, Upper Saddle River, New Jersey. E11. Dawood, N. N., and Neale, R.H. (1990). “A survey for the current production practices in the pre-cast industry.” Constr. Manage. Econ. J., 8, 365-383. E12. Formoso, C.T., and Revelo, V.H. (1999). “Improving the materials supply system in small-sized building firms.” Automation in Construction, Elsevier, 8, 663-670. E13. Gen, M., and Cheng, R. (1997). “Genetic Algorithms and engineering design.” John Wiley & Sons, INC. New York. E14. Goldberg, D., (1989). “Genetic Algorithms in Search, Optimization and Machine Learning.” Addison-Wesley, Reading, MA. E15. Goyal, S.K. and Srinivasan, G. (1992), “The individually Responsible and Rational Decision Approach to Economic Lot Sizes for one Vendor and Many Purchasers: A Comment”, Decision Sciences, 23, pp. 777-784. E16. Hegazy, T. (1999). “Optimization of resource allocation and leveling using genetic algotithms” J. Constr. Eng. and Mgmt., ASCE, 125(3), 167-175. E17. Holland, J., (1975). “Adaptation in Natural and Artificial Systems.” University of Michigan Press, Ann Arbor. E18. Horman, M.J., and Thomas H.R. (2005). “Role of Inventory Buffers in Construction Labor Performance.” J. Constr. Eng. and Mgmt., ASCE, 131 (7), 834-843. E19. Howell, G., and Ballard, G. (1996) “Managing uncertainty in the piping function.” CII Rep. 47-13, Construction Industry Institute, Austin, Tex. E20. Hsu, S.L. (2000). “A class of lot-size models with ordering cost reduction for integrated inventory systems.” PhD dissertation, National Chiao Tung University, Taipei, Taiwan. E21. http://www.aecXML.org E22. Kong, S.C.W., Li, H., Hung, T.P.L., Shi, J.W.Z., Castro-Lacouture, D., and Skibniewski, M. (2004). “Enabling information sharing between E-commerce systems for construction material procurement.” Automation in Construction., Elsevier, 13, 261-276. E23. Land, A. G., and Doig, A. G., (1960). “An Automatic Method for Solving Discrete Programming Problems.” Econometrica, Vol.28, pp.497-520. E24. Lodon, K. A., and Kenley, R. (2001). “An industrial organization economic supply chain approach for the construction industry: a review.” Construction Management and Economics, 19, 777-788. E25. Low, S.P., and Choong, J.C. (2001). “Just-in-time management of pre-cast concrete components.” J. Constr. Engrg. and Mgmt., ASCE, 127 (3), 494-501. E26. Marsh, J.W. (1985). “Materials management: practical application in the construction industry.” Cost Engineering, ASCE, 27, 18-28. E27. Monahan, J.P. (1984), “A quantity discount pricing model to increase vendor’s profits.” Management Science, 30, 6, 720-726. E28. O’Brien, W.J., and Fisher, M.A. (2000). “Importance of capacity constraints to construction cost and schedule.” J. Constr. Eng. and Mgmt., ASCE, 126(5), 366-373. E29. Park, M., and Peña-Mora F. (2004). “Reliability Buffering for Construction Projects.” J. Constr. Eng. and Mgmt., ASCE, 130 (5), 626-637. E30. Sack, R., Eastman, C. M., and Lee, G. (2004). “Process Model Perspectives on Management and Engineering Procedures in the Precast/Prestressed Concrete Industry.” J. Constr. Eng. and Mgmt., ASCE, 130 (2), 206-215. E31. Supply Chain Council: http://www.supply-chain.org/index.ww E32. Taha, H. A. (2001). “Operation research: an introduction.” Prentice Hall, Upper Saddle River, New Jersey. E33. Thomas, H. R., Horman, M. J., Minchin, E. Jr., and Chen, D. (2003). “Improving labor flow reliability for better productivity as lean construction principle.” J. Constr. Eng. and Mgmt., ASCE, 129(3), 251-261. E34. Thomas, H. R., Riley, D.R., and Messner, J. I. (2005). “Fundamental principles of site material management.” J. Constr. Eng. and Mgmt., ASCE, 131(7), 808-815. E35. Tommelein, I.D., http://www.ce.berkeley.edu/~tommelein E36. Tommelein, I.D. (1998). “Pull-Driven scheduling for pipe-spool installation: Simulation of lean construction technique.” J. Constr. Eng. and Mgmt., ASCE, 124(4), 279-288. E37. Tommelein, I.D., Riley, D., and Howell, G.A. (1999). 'Parade Game: Impact of Work Flow Variability on Trade Performance.' ASCE, J. of Constr. Engrg. and Mgmt., 125 (5) 304-310, Sept/Oct Issue. E38. Tserng, H.P., and Lin, P.H. (2002). “An accelerated subcontracting and procuring model for construction projects.” Automation in Construction, Elsevier, 11, 105-125. E39. Tserng, H.P., and Lin, W.Y. (2003). “Developing an electronic acquisition model for project scheduling using XML-based information standard.” Automation in Construction, Elsevier, 12 (2003), 67-95. E40. Tserng, H.P., Yin, S., and Li, S. (2005). “Developing a resource supply chain system for construction projects.” J. Constr. Eng. and Mgmt., Accepted July 2005 E41. Vrijhoef, R., and Koskela, L. (2000) “The four roles of supply chain management in construction.” European J. of Purchasing & Supply Management 6, 169-178. E42. Warszawski, A. (1982). “Managerial planning and control in pre-cast industry.” J. Constr. Div., Am. Soc. Civ. Eng., 108(2), 299-313. E43. Warszawski, A. (1984). “Production planning in prefabrication plant.” Building and Environment, Vol. 19, No. 2, pp 139-147. E36. E44. Ziverts, G.. and Bajar, E. (1976). “Production planning and scheduling for long line prestress products.” J. Prestressed Concr. Inst., 21(6), 46-75. 中文參考文獻 C1. 葉文凱、陳永成主編,財團法人台灣營建研究院,(2000). “預鑄建築工程實務”,科技圖書股份有限公司,台北 C2. 黎漢林、許景華、李明純、張李志平,(2000). “供應鏈管理與決策-最佳化方法之運用”,儒林圖書有限公司,台北 C3. 王立志,(1999). “系統化運籌與供應鏈管理”,滄海書局,台北 C4. 蔣明晃,(2000). “管理科學概論”, 華泰文化事業公司,台北 C5. 許宏熙,(2001). “供應鏈理論應用於營建物料規劃之研究-以預鑄廠鋼筋材料為例”,國立台灣大學土木工程學研究所碩士論文 C6. 蘇木春、張孝德,(2000).”機器學習:類神經網路、模糊系統以及基因演算法則”,全華科技圖書股份有限公司 C7. 葉文凱、陳永成主編,(2000). “預鑄建築工法技術推廣手冊”, 財團法人台灣營建研究院,台北 C8. 徐坤榮,(2000). “建築工程營建生產力之研究-以預鑄工法為例”, 國立台灣大學土木工程學研究所碩士論文 C9. 謝志祥,(2003). “供應鍊管理之多目標主規劃排程演算法”, 國立台灣大學資訊管理學研究所碩士論文 C10. 施國銓,”應用限制規劃於營建專案有限資源排程與重排程最佳化之研究”,國立雲林科技大學營建工程學研究所碩士論文 C11. 廖精松等,(2004). ”3M廠房建築工程預鑄構件生產計劃”, 潤弘精密工程,桃園楊梅 C12. 廖精松等,(2005). ”3M廠房建築工程預鑄構件生產紀錄表(Excel檔案格式)”, 潤弘精密工程,桃園楊梅 C13. 徐淑如,(2000). “降低訂購成本之供應鏈存貨模式”, 國立交通大學經營管理研究所博士論文 C14. 何金玲,(2002). “營建供應鏈績效評估指標”, 國立台灣科技大學營建工程學研究所碩士論文 C15. 劉昱江,(2000). “基因演算法在重複性工程時間成本分析之應用”, 朝陽科技大學營建工程學系碩士論文 C16. 黃少廷,(1999). “預鑄工廠生產排程最適化模式之探討”, 國立台灣科技大學營建工程學研究所碩士論文 C17. 楊崇揮,(1997). “多評準施工流程最適化計算模式之探討”, 國立台灣科技大學營建工程學研究所碩士論文 C18. 楊明山,(1999). “存貨理論應用於工程專案物料採購計畫之研究”, 朝陽科技大學營建工程學研究所碩士論文 C19 麥可波特,(1999). “競爭策略”,天下文化出版,台北 C20. 駱至中,(2002). “淺談人工智慧”,九十ㄧ年停雲雅會講稿,佛光人文社會學院資訊科學系,高雄 C21. 營建署,營建自動化及電子化網站:http://www.cpami.gov.tw/cpamisys/c19_index.php C22. 詹耀裕等,(2004). ”3M廠房建築工程預鑄構件施工計劃”, 潤弘精密工程,桃園楊梅 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34709 | - |
dc.description.abstract | 摘 要
過去營建專案規劃及管理工作多將重點放在專案工地,強調工地進度與成本等重要執行績效符合合約規範、業主要求,及內部控管目標;對於上游供應商成本、進度,及生產供應行為等問題甚少涉及,結果造成供應商在規劃生產的困難,也提高供應商生產的成本。 本研究以預鑄專案生產規劃為研究重點,研究預鑄生產特性。考慮預鑄模具生產機能、生產產能、專案生產資源供應,預鑄廠生產及儲存等限制;在符合專案工地進度要求下,建立模具、庫存、生產場地設備,及生產人工材料資源等總成本最適化的生產規劃模型。此外本研究並分析預鑄商交易條件和決策主體對其鋼筋供應商聯合庫存成本的影響。本研究運用已建立的生產模型探討預鑄廠對一特定高科技廠房專案預鑄結構生產規劃期與總成本、庫存成本,及模具成本之間的關係,並進行人工工時及混凝土供應體積等限制對總成本、庫存成本,及模具成本影響的敏感度分析。最終對預鑄供應商為因應工地對預鑄構件安全庫存要求等工地因素對生產規劃的影響所進行的分析,以了解因主承商所造成的進度延誤對預鑄供應商生產及成本的影響。 | zh_TW |
dc.description.abstract | ABSTRACT
In some developing countries, material costs can make up as much as 60%–65% of the total construction cost. Therefore, how construction materials are managed has a crucial influence on the success of the entire project. However, the researchers traditionally put emphasis on the construction site management and didn't pay much attention to the scope of the material supply chain management. They care about the schedule, cost, and quality performance of construction site. This research explores the relationship between supplier production and site construction activities, as well as production resource capacity. This research develops a precast production planning model that could meet site element installation demand, satisfy internal production resource constraints, and optimizes the total costs of production molds, material, labor, production space, and inventory cost, etc. This research also uses an actual case to evaluate model performance. The results show that the model provides better solutions quality than the original production plans and the actual production results of the case. This research also takes the production and supply planning of a rebar plant as the research subject, builds an integrated inventory model, and develops an integrated inventory cost information system. This system provides the materials supplier with a tool to perform production and supply planning and also reduce the material integrated inventory. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T06:23:59Z (GMT). No. of bitstreams: 1 ntu-95-D88521018-1.pdf: 1335643 bytes, checksum: 37ed57a9f2a2ba6032e36e3ded63c7cf (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | TABLE OF CONTENTS
致謝 摘要 內容目錄 表目錄 圖目錄 CHAPTER 1 INTRODUCTION………….....……..………….1 1.1 Research Motivation and Background……..……………...…….1 1.2 Research Objectives and Scope……………..………………...…..8 1. Research Objectives……………………………………………………...….8 2. Research Scope and Constraints………..………………………………..…9 1.3 Research Process Flow………………..…………...……………..12 CHAPTER 2 LITERATURES REVIEW ……….……….….17 2.1 Basic Concepts of Supply Chain Management….……………...17 1. The Concept of Supply Chain Management ..……..………………...…...17 2. Supply Chain Management Factors and Problems……..……….……….18 3. Research Approaches of the Supply Chain ………...…………….………20 4. The Integrated Inventory Model ………………...………....……..………21 5. The Vendor Managed Inventory (VMI) Model………........………..……23 2.2 Researches of Construction Supply Chain Management…..…24 1. Lean Construction………………..……………………………….………..24 2. Construction Supply Chain Management Research…………….………25 3. Construction Supply Chain Information Technology……...…...………30 4. Precast Component Production Planning………………...……………..34 2.3 Summary ………………...…...……………………………........38 CHAPTER 3 PRECAST PRODUCTION ANALYSIS ….….40 3.1 Classification of Precast Production……………………….……42 3.2 Stationary Precast Production Processes………………….……44 3.3 Short Production (Project-Based) Planning for Stationary System……………………………………………………………..50 1. Position of Research Subject………………………………………… ……50 2. Factors Affecting a Stationary Precast Production Project……………..52 3. A Planning Process for a Stationary Precast Production System……….52 CHAPTER 4 MODEL DEVELOPMENT ……………..……57 4.1 Basic Concepts for the Model Development……………………57 4.2 Model Parameters and Definitions…………………...…………59 4.3 A Model for Stationary Precast Production System……………61 1. Objective Function……………………...…………………….……………61 2. Model Constraints…………………..……...………………………………67 4.4 Summary……………………………………..…………………...72 CHAPTER 5 MODEL SOLVING ALGORITHMS…………74 5.1 Concepts for Model Solving…………...……..…..………..……74 5.2 Branch-and-Bound Method……………………..….……..……76 5.3 Genetic Algorithm……………………...……..………………….78 1. Genetic Algorithm Overview………………………………………………78 2. Solution Search Process of Genetic Algorithm……..………………….…81 5.4 Summary……………………..…………………………………...86 CHAPTER 6 ILLUSTRATIVE PROJECT CASE …...…….87 6.1 Illustrative Project Information…………………………………87 1. Project Overview…………………………….……..………………………87 2. Project Characteristics……………………….…..………………………..87 3. Elements Summary………………………….……………………………...91 4. Element Installation and Construction Schedule………………….……..92 5. Element Installation Demand Schedule………………………………….95 6. Model Constants……………………………………………………………95 6.2 Information System for Model Solving……………..…………..96 6.3 Model Performance Analysis…………………………………...100 6.4 Analysis of Capacity Constraints of Production Factors ….…110 1. Production Time…………………………………..……………………..110 2. Production Space Supply Constraint…………………...………………111 3. Daily Concrete Supply Constraint Analysis ……………..…….………113 4. Analysis for Daily Labor Hours Supply Constraint…..……....….……116 6.5 Soft constraint Analysis for Production Resource………….…118 1. Analysis of Soft Constraints of Internal Concrete Supply ……....……118 2. Analysis of Soft Constraints of Labor Hours Supply …………………119 6.6 Analysis of Site Influencing Factors …………….………..……120 1. Element safety stock requirement…………..……….……………….…120 2. Delay in Site Progress……………………………………….……..……122 6.7 Summary……………...……………...………………….………125 CHAPTER 7 ANALYSIS OF MATERIAL SUPPLIERS …127 7.1 The Integrated Inventory Cost Model…...……………….……127 1. Definition of Variables………….…………...……………………..……128 2. Procedures for Developing the Integrated Inventory Cost Model……130 3. Transaction Conditions and Constraints………………….…… ……..135 4. Model Solving Procedure……………………..…………………… …135 7.2 The Integrated Inventory Cost Information System………….137 1. The Buyer Demand Data Input Page………….………………………..138 2. The Planning Parameters Input Page……………….………………….138 3. The Planning Result Page……………………..………………………...139 7.3 Illustrative Example and Analysis of Results………………….140 1. An Overview of the Illustrative Example…………..…………………..141 2. Planning Parameters and Cost-Related Data…………..………..…….144 3. Transaction Conditions and Constraints……………………………….145 4. Analysis of Planning Results……………………………………..…..….146 7.4 Summary……………..……...…………………………………..149 CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS….…152 8.1 Conclusions……...………………………………………………152 8.2. Research Contributions…………...…………………...………154 8.3 Recommendations……………..………………………………..155 APPENDIX…………………………..……..……………...…157 TABLES Table 2.1: Supply chain management decision stages and issues…………….…….20 Table 2.2: Model comparison between Goyal & Srinivasan research and this research………………………………………..……….………………..…23 Table 2.3: Important literatures on precast production…………..……..………….37 Table 3.1: Classification of precast production with related researches………..….44 Table 4.1: Model parameters and definitions………………………………………..59 Table 5.1: Definition of genetic algorithms vocabulary………….......……………..80 Table 6.1: Comparison between original type and grouped type classification of beams…………………………………………………...………………….91 Table 6.2: Elements specification for grouped types…………………….………….92 Table 6.3: Element Q’ty of grouped type for each floor…………………………….92 Table 6.4: Precast elements installation plan (1F and 2F)………………...…….….93 Table 6.5: Precast elements installation plan (B1F)…………………….…………...94 Table 6.6: Precast element installation schedule……………………….……………94 Table 6.7: Constants Names and values in the model…………………...…………..96 Table 6.8: Elements production schedule and quantity (Elements for 1F and 2F in 35 working days)…………………………………………………………102 Table 6.9: Elements production schedule and quantity (Elements for B1F, 1F, and 2F in 49 working days)…………………………………...…………...…103 Table 6.10: Elements production schedule and quantity(Elements for B1F, 1F, and 2F in 43 working days)………………………………...……………104 Table 6.11: Comparison of the model planning results with the original production plan (Producing elements for 1F & 2F in 35 days)…………………….105 Table 6.12: Detail model planning result (Producing elements for 1F & 2F in 35 days)………………………………………………………………………106 Table 6.13: Comparison of the model planning results with the original production plan(Producing elements for B1F, 1F and 2F in 43 working days)…...107 Table 6.14: Detail model planning result(Producing elements for B1F, 1F and 2F in 43 working days)…………………………………………………………107 Table 6.15: Comparison of the model planning results with the actual Production Record (Producing elements for B1F, 1F and 2F in 49 working days)………………………………………………………...…………….108 Table 6.16: Detail model planning result (Producing elements for B1F, 1F and 2F in 49 working days)………………………….…………...…………………109 Table 6.17: Results of the different length of production time………….…………111 Table 6.18: Analysis on the effects of the upper limit of the production space supply on production behaviors and cost………….…………………....………112 Table 6.19: Analysis of effects of daily concrete supply constraint on production behaviors and cost……………………..…………………………………114 Table 6.20: Analysis on effects of daily labor hours supply constraint on production behaviors and cost……………………………………..…………………117 Table 6.21: Soft constraint analysis for internal concrete volume supply…….….119 Table 6.22: Soft constraint analysis for interior labor supply………...………..…120 Table 6.23: Effects of element safety stock on production planning……...…...….122 Table 6.24: Production behaviors after construction progress is delayed……......124 Table 6.25: Comparison of the production cost of delayed construction with that of normal progress………………………..………………...………………125 Table 7.1: Variables definition for the integrated inventory cost model……….…129 Table 7.2: Demand data for buyer I………………………………………...………143 Table 7.3: Demand data for buyer II………………………………………..….…..143 Table 7.4: Planning parameters and cost-related data……………..…………..….144 Table 7.5: The influence of transaction conditions on the integrated inventory cost…………………………..……………………………………………146 Table 7.6: Planning results under global optimization…………………………….147 Table 7.7: Supply plan for Buyer I……………….…….…………………………...147 Table 7.8: Supplier production plan…………….……..……………………………148 Table 7.9: Results for inventory cost of four decision-making perspectives….….149 FIGURES Figure 1.1: Research process flow………………..……………………….…………16 Figure 2.1: The four aspects of construction supply chain management…….……27 Figure 2.2: The e-AMP information technology architecture……….………….….33 Figure 3.1: Production processes for the stationary precast production system …46 Figure 3.2: Operations for rebar cage manufacturing……………..…….………...47 Figure 3.3: Operations for production mold assembling………………..…………47 Figure 3.4: Operations for tile placing …………………………………....…….….. 48 Figure 3.5: Operations for rebar cage and accessory parts assembling….……..…48 Figure 3.6: Operations for concrete placing…………………………..…….….……48 Figure 3.7: Operations for Element Steam Curing…………………………...……..49 Figure 3.8: Operations for Element Finishing, Stocking, etc……………………….49 Figure 3.9: Influencing production factors in a stationary precast production project…………………………………………….……..……..………..…52 Figure 3.10: Production planning processes for a stationary system…………........54 Figure 3.11: Schematic diagram of precast production assignment………….……56 Figure 4.1: Schematic diagram of element production assignment variable……...59 Figure 5.1: Schematic diagram of model solving architecture……………………..76 Figure 5.2: Schematic diagram of genetic algorithm………………...........………..80 Figure 5.3: Solution search process of genetic algorithm…………………..……….82 Figure 5.4: Examples of chromosomes crossover……………………..…………….84 Figure 5.5: An example of bit-mutation…………………………….………..………85 Figure 6.1: Layout for precast production of the 3M plant project……………..…90 Figure 6.2: ILOG OPL system page………………………………..………...………97 Figure 6.3: Evolver system setting page…………………..…………………………99 Figure 6.4: Evolver system option page………………...……………………………99 Figure 6.5: Evolver system solving watcher page 1……...…………….……………99 Figure 6.6: Evolver system solving watcher page 2…………………….………….100 Figure 7.1: Demand, production, and supply curves……………………..………134 Figure 7.2: Model solving procedures……………………………………..……….137 Figure 7.3: Buyer demand data input page…………………………..……………138 Figure 7.4: Planning parameters input page………………………………………139 Figure 7.5: Planning results page…………………………………………………..140 Figure 7.6: Component production and construction schedules……………...…142 | |
dc.language.iso | en | |
dc.title | 建立預鑄供應鏈生產規劃模型 | zh_TW |
dc.title | Developing A Production Planning Model for A Precast Plant in The Supply Chain System | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 陳振川,尹衍樑,郭斯傑,葉文凱,王維志,鄭明淵 | |
dc.subject.keyword | 供應鏈,預鑄施工,生產規劃,基因演算法,分支界限法,材料供應商, | zh_TW |
dc.subject.keyword | Precast Production,Supply Chain,Genetic Algorithm,Branch-and-bound,Precast Installation, | en |
dc.relation.page | 169 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-01-24 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 1.3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。