請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34597
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 呂廷璋 | |
dc.contributor.author | Chi-Ruei Wu | en |
dc.contributor.author | 吳啟瑞 | zh_TW |
dc.date.accessioned | 2021-06-13T06:17:23Z | - |
dc.date.available | 2006-02-06 | |
dc.date.copyright | 2006-02-06 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-01-27 | |
dc.identifier.citation | 陸、參考文獻
沈明來。2004。迴歸分析。試驗設計學。P.409-513,九州圖書有限公司,臺北市。 周文賢。2002。迴歸分析。多變量統計分析:SAS/STAT使用方法。P.73-154,智勝文化事業有限公司,臺北市。 陳永軒。2002。化學誘變稻米品系之澱粉組成與物性差異。國立台灣大學食品科技研究所碩士論文。 陳鈴霓。1994。台灣稻米支鏈澱粉之微細結構與理化性質之相關性。國立中興大學食品科技研究所碩士論文。 曾永翰。1996。直、支鏈澱粉分子結構對其理化及流變性質的影響。國立台灣大學食品科技研究所碩士論文。 楊啟春、賴惠民、呂政義。1984。米澱粉分離法之改進。食品科學 11: 158-162。 American Association of Cereal Chemists (AACC). 2000. Approved methods of the AACC. 10th ed. St. Paul, MN, USA. Asaoka M, Okuno K, Sugimoto Y, Fuwa H. 1985. Developmental changes in the structure of endosperm starch of rice (Oryzae sativa L.). Agric Biool Chem 49:1973-1979. Asaoka M, Okuno K, Sugimoto Y, Yano M, Omura T and Fuwa H. 1986. Characterization of endosperm starch from high-amylose mutants of rice (Oryzae sativa L.). Starch38:114-117. Atwell WA, Hood LF, Lineback DR, Varriano-Marston E, Zobel HF. 1988. The terminology and methodology associated with basic starch phenomena. Cereal Food World 33:306-311. Azudin MN, Morrison WK. 1986. Non-starch lipids and starch lipids in milled rice. J Cereal Sci 4:23-31. Baik MY, Kim KJ, Cheon KC, Ha YC, Kim WS. 1997. Recrystallization kinetics and glass transition of rice starch gel system. J Agri Food Chem 45:4242-4248. Baldwin PM, Adler J, Davies MC. 1994. Holes in starch granules- Confocal SEM and light-microscopy studies of starch granules structure. Starch 46:341-346. Baldwin PM, Adler J, Davies MC. 1998. High resolution imaging of starch granule surfaces by atomic force microscopy. J Cereal Sci 27:255-265. Banks W, Greenwood CT. 1975. In W. Banks & C. T. Greenwood, Starch and its components (pp. 51-112). Edinburgh University Press, Edinburgh. Bao J, Bergman CJ. 2004a. The functionality of rice starch. In: Ann-Charlotte Eliasson, editor. Starch in food: Structure, function and application. pp258-294. Bao, Corke H, Sun M. 2004b. Genetic diversity in the physicochemical properties of waxy rice (Oryza sativa L) starch. J Sci Food Agric 84:1299-1306. Bao J, Kong X, Xie J, Xu L. 2004c. Analysis of Genotypic and environmental effects on rice starch. 1. Apparent amylose content, pasting viscosity, and gel texture. J Agric Food Chem 52:6010-6016. Bao J, Sun M, Zhu L, Corke H. 2004d. Analysis of quantitative trait loci for some starch properties of rice (Oryza sativa L.) : thermal properties, gel texture and swelling volume. J Cereal Sci 39:379-385. Bao JS, Ao ZH, Jane JI. 2005. Characterization of physical properties of flour and starch obtained from gamma-irradiated white rice. Starch 57 : 480-487. Bello-Perez LA, Roger P, Baud B, Colonna P. 1998a. Macromolecular features of starches determined by aqueous high-performance size exclusion chromatography. J Cereal Sci 27:267-278. Bello-Perez LA, Roger P, Colonna P, Paredes-Lopez O. 1998b. Laser light scattering of high amylose and high amylopectin materials, stability in water after microwave dispersion. Carbohydr Polym 37:383-394. BeMiller JN. 1964. Iodimetric determination of amylose. In: R L Whistler, editor. Method in carbohydrate chemistry vol. pp.165-160. Bergman CJ, Bhattacharya KR, Ohtsubo. 2004. Rice end-use quality analysis. In: Elaine T Champagne, editor. Rice: Chemistry and Technology . American Association of Cereal Chemists, Inc. pp.415-472. Bertoft E, Koch K. 2000. Composition of chains in waxy-rice starch and its structural units. Carbohydr Polym 41:121-132. Bett-Garber KL, Champagne ET, McClung AM, Moldenhauer KA, Linscombe SD, McKenzie KS. 2001. Categorizing rice cultivars based on cluster analysis of amylase content, protein and sensory attributes. Cereal Chem 78: 551-558. Biliaderis CG. 1992. Structures and phase transitions of starch in food system. Food Technol 46:98-109. Biliaderis CG. 1998. Structures and phase transitions of starch polymers. In : Walter RH. (Ed). Polysaccharide Association Structure in Foods. Marcel Dekker, New York, pp.57-168. Biliaderis CG, Juliano BO. 1993. Thermal and mechanical properties of concentrated rice starch gel of varying composition. Food Chem 48:243-250. Biliaderis CG, Page CM, Maurice TJ, Juliano BO. 1986. Thermal characterization of rice starches: A polymeric approach to phase transitions of granule starch. J Agric Food Chem 34:6-14. Blanshard JMV. 1987. Starch granule structure and function: a physicochemical approach. In: Galliard T, editors. Starch: properties and potential. New York: Wiley Chichester. p 16-54. Bradbury AGW, Bello ABT. 1993. Determination of molecular-size distribution of starch and debranched starch by a single procedure using high-performance size-exlusion chromatography. Cereal Chem 70:543-547. Buleon A, Colonna P, Planchot V, Ball S. 1998. Starch granule: structure and biosynthesis. International Journal of Biological Macromolecules 23:85-112. Champagne ET. 1996. Rice Starch composition and characteristics. Cereal Food World 41:833-838. Champagne ET, Bett KL, Vinyard BT, McClung AM, Barton FE, Moldenhauer K, Linscombe S, McKenzie K. 1999. Correlation between cooked rice texture and rapid visco analyser measurements. Cereal Chem 76:764-771. Champagne ET, Bett KL, McClung AM, Bergman CB. 2004. Sensory characteristic of diverse rice cultivars as influecnced by genetic and environment factors. Cereal Chem 81:237-243. Chang TT. 2003. Origin, Domestication, and Diversification. In: C Wayne Smith, Robert H Dilday, editor. Rice: Origin, History, Technology, and Prodcution. John Wiley & Sons, Inc. pp.3-25. Chang SM, Liu LC.1989. Study on the retrogradation of cooked rice. Food Sci (ROC) 16:347-356. Cheetham NWH, Tao L. 1998. Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohydrate Polym 36:277-284. Chrastil J. 1987. Improved colorimetric determination of amylose in starches or flours. Carbohydr Res 159:154-158. Cooke D, Gidley MJ. 1992. Loss of crystalline and molecular order during starch gelatinization: origin of the enthalpic transition. Carbohydrate Res 227:103-112. Dang JMC, Copeland L. 2003. Imaging rice grains using atomic force microscopy. J Cereal Sci 37:165-170. Daubert CR, Foegeding EA. 2003. Rheological principles for food analysis. In S. Suzanne Nielsen, editor. Food analysis. Deffenbaugh LB, Walker CE. 1989. Comparison of starch pasting properties in the Brabender Viscograph and the Rapid Visco-Analyzer. Cereal Chem 66:493-499. Donald AM, Waigh TA, Jenkins PJ, Gidley MJ, Debet M, Smith A. 1997. Internal structure of starch granule revealed by scattering studies. In: Frazier PJ, Donald AM, Richmond P. (Eds). Starch: Structure and Functionality. The Royal Society of Chemistry, Cambridge. pp172-179.0 Donovan JW. 1979. Phase transitions of starch-water system. Biopolymers 18:263-275. Doublier JL. 1981. Rheological studies on starch: Flow behavior of wheat starch pastes. Starch 33:415-420. Doublier JL, Choplin L. 1989. A rheological description of amylose gelation. Carbohydr Res 193:215-226. Eliasson AC. 1985. Starch gelatinization in the presence of emulsifiers: a morphological study of wheat starch. Starch 37:411-415. Eliasson AC and Bohlin L. 1982. Rheological properties of concentrated wheat starch gels. Starch 34:267-271. Eliasson A, Gudmundsson M. 1996. Starch: physicochemical and functional aspects. In: Ann-Charlotte Elasson, editor. Carbohydrates in food. New York: Marcel Dekker, Inc. pp431-503. Ellis HS, Ring SG. 1985. A study of some factors influencing amylose gelation. Carbohydr Polymers 5:201-213. Fishman ML, Rodriguez L, Chau HK. 1996. Molar masses and sizes of starches by high-performance size-exclusion chromatography with on-line multi-angle laser light scattering detection. J Agric Food Chem 44:3182-3188. Fitzgerald MA. 2004. Starch. In: Champagne ET, editor. Rice: chemistry and technology. 3rd ed. American Association of Cereal Chemists, Inc. p. 109-141. Fitzgerald MA, Martin M, Ward RM, Park WD, Sheard HJ. 2003. Viscosity of rice flour: A rheological and biological study. J Agric Food Chem 51:2295-2299. Fredriksson H, Andersson R, Koch K, Aman P. 1997. Calibration of a size-exclusion chromatography system using fractions with defined amylopectin unit chains. J Chromatogr A 768:325-328. Fredriksson H. Silverio J, Andersson R, Eliasson AC, Aman P. 1998. The influence of amylose and amylopectin characteristics on gelatinization and retrogradation properties of different starches. Carbohydr Polym 35:119-134. French D. 1972. Fine structure of starch and its relationship to the organization of starch granules. Denpun Kagaku 19:8-25. French D. 1984. Organization of starch granules. In: Roy L. Whistler, James N. BeMiller, Eugene F. Paschall, editors. Starch: chemistry and technology. 2nd ed. Academic Press, Orlando, U.S.A. pp183-247. Gallant DJ, Bouchet B, Baldwin PM. 1997. Microscopy of starch: evidence of a new level of granule organization. Carbohydr Polym 32:177-191. Galliard T, Bowler P. 1987. Morphology and composition of starch. In: Starch: Properties and Potential Galliard T (Ed), Wiley, Chichester, pp55-78. Gerard C. Barron C. Colonna P. Planchot V. 2001. Amylose determination in genetically modified starches. Carbohydr Polym 44:19-27. Gibson TS. Solah VA, McCleary BV. 1997. A procedure to measure amylose in cereal starches and flours with concanavalin A. J Cereal Sci 25:111-119. Hagenimana A, Pu P, Ding X. 2005. Study on thermal and rheological properties of native starches and their corresponding mixtures. Food Res International 38:257-266. Han JA, Lim ST. 2004a. Structural changes in corn starch during alkaline dissolution by vortexing. Carbohydr Polym 55:193-199. Han JA, Lim ST. 2004b. Structural changes of corn starch by heating and stirring in DMSO measured by SEC-MALLLS-RI. Carbohydr Polym 55:265-272. Han XZ, Hamaker BR. 2001. Amylopectin fine structure and rice starch paste breakdown. J Cereal Sci 34:279-284. Han XZ, Hamaker BR. 2002. Location of starch granule –associated proteins revealed by confocal laser scanning microscopy. J Cereal Sci 35:109-116. Hanashiro I, Tagawa M, Shibahara S, Iwata K, Takeda Y. 2002. Examination of molar-based distribution of A, B and C chains of amylopectin by fluorescent labeling with 2-aminopyridine. Carbohydr Res 337:1211-1215. Herrero-Martinez JM, Schoenmakers PJ, Kok WT. 2004. Determination of the amylose-amylopecin ratio of starches by iodine affinity capillary electrophoresis. J Chromatography A 1053:227-234. Hizukuri S. 1985. Relationship between the distribution of the chain length of amylopectin and the crystalline structure of starch granules. Carbohydr Res 141: 295-306. Hizukuri S. 1986. Polymodal distribution of the chain lengths of amylopectin and its significance. Carbohydr Res 147:342-347. Hizukuri S. 1988. Recent advances in molecular structures of starch. Depun Kagaku 35:185-198. Hizukuri S. 1993. Towards an ununderstanding of the fine structure of starch moleculars. Denpun Kagaku 40:133-147. Hizukuri S. 1996. Starch: analytical aspects. In: Ann-Charlotte Eliasson, editor. Carbohydrates in food. New York: Marcel Dekker, Inc. P347-429. Hizukuri S, Takagi. 1984. Estimation of the distribution of molecular weight for amylose by the low angle laser-light-scattering technique combined with high-performance gel chromatography. Carbohydrate Res 134:1-10. Hizukuri S, Takeda Y, Yasuda M, Suzuki A. 1981. Multi branched nature of amylose and the action of debranching enzymes. Carbohydrate Res 94:205-312. Hsu S, Lu S, Huang C. 2000. Viscoelastic changes of rice starch suspensions during gelatinization. J Food Sci 65:215-220. Imberty A, Buleon A, Tran V, Perez S. 1991. Recent advances in knowledge of starch granule. Starch 43:475-384. Ishiguro K, Noda T, Kitahara K, Yamakawa O. 2000.Retrogradation of sweetpotato starch. Starch 52:13-17. Iturriaga L, Lopez B, Anon M. 2004. Thermal and physicochemical characterization of seven argentine rice flours and starches. Food Res International 37:439-447. Jackson DS. 1991. Solubility behavior of granular corn starches in methyl sulfoxide (DMSO) as measured by high performance size exclusion chromatography. Starch-Starke 43:422-427. Jane JL, Chen JF. 1992. Effect of amylose molecular size and amylopectin branch chain length on paste properties of starch. Cereal Chem 69:60-65. Jane JL, Chen YY, Lee LF, McPherson AE, Wong KS, Radosavljevic M, Kasemsuwan T. 1999. Effect of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starches. Cereal Chem 76:629-637. Jacobs H, Delcour JA. 1998. Hydrothermal modifications of granular starch, with retention of the granular structure. A review. J Agric Food Chem 46:2895-2905. Jacobson MR, Obanni M, BeMiller JN. 1997. Retrogradation of starches form different botanical sources. Cereal Chem 74:511-518. Jenkins JPJ, Cameron RE. Donald AM. 1993. A universal feature in the structure of starch granules from different botanical sources. Starach 45:417=420. Juliano BO. 1971. A simplified assay for milled-rice amylose. Cereal Sci Today 16:334-338. Juliano BO. 1985a. Polysaccharide, proteins and lipids of rice . In Rice: Chemistry and Technology, 2nd ed. B. O. Juliano, Ed. American Association of Cereal Chemists. pp,59-174. Juliano BO. 1985b. Criteria and tests for rice grain qualities. In Rice: Chemistry and Technology, 2nd ed. B. O. Juliano, Ed. American Association of Cereal Chemists. pp,443-542. Juliano BO. 1992. Structure, chemistry, and function of the rice grain and its fractions. Cereal Food World 37:772-776. Juliano BO. 1998. Varietal impact on rice quality. Cereal Food World 43:207-222. Juliano BO. Perez CM. Blakeney AB. Castillo DT. Kongseree N. Laignelet B. Lapis ET. Murty VVS. Paule CM. Webb BD. 1981. International cooperative testing on the amylose content of milled rice. Starch 33:157-162. Kalichevsky MT, Orford PD, Ring SG. 1990. The retrogradation and gelation of amylopectins from various botanical sources. Carbohydr Res 198:49-55. Karim AA, Norziah MH, Seow CC. 2000. Methods for the study of starch retrogradation. Food Chem 71:9-36. Kassenbeck P. 1978. Contribution to knowledge on distribution of amyolose and amylopectin in starch granules. Starch 30:40-46. Kennedy G, Burlingame B. 2003. Analysis of food composition data on rice from a plant genetic resources perspective. Food Chem 80: 589-596. Knutson CA, Grove MJ. 1994. Rapid method for estimation of amylose in maize starches. Cereal Chem 71:469-471. Koizumi K, Fukuda M, Hizukuri S. 1991. Estimation of the distributions of chain-length of amylopectins by high-performance liquied-chromatography with pulsed amperometric detection. J Chromatography 585:233-238. Kossmann J, Lloyd J. 2000. Understanding and influencing starch biochemistry. Cri. Rev Plant Sci 19:171-226. Larson BL. 1953. Amperometric method for determining the sorption of iodine by starch. Ana Chem 25:802-804. Lai VMF. Lu S, Lii CY. 2000. Molecular characteristics influencing retrogradaton kinetics of rice amylopects. Cereal Chem 77:272-278. Leloup VM, Colonna P, Buleon A. 1991. Influence of amylose- amylopectin ratio on gel properties. J Cereal Sci 3:1-13. Lii CY, Chang YH. 1991. Study of starch in Taiwan. Food Rev International 7:185-203. Lii CY, Lai VMF, Lu S, Tsai ML. 1998. Correlation between the physical property, eating quality and the molecular structure of rice-starchy system. Zywnosc Technologia Jackosc (Poland) 4:72-86. Lii CY, Lai VMF, Shen MC. 2004. Changes in retrogradation properties of rice starches with amylose content and molecular properties. Cereal Chem 81:392-398. Lii CY, Shao YY, Tseng KH. 1995. Gelation mechanism and rheological properties of rice starch. Cereal Chem 72:393-400. Lii CY, Tsai ML, Tseng KH. 1996. Effect of amylose content on the rheological property of rice starch. Cereal Chem 73:415-420. Limpisut P, Jindal. 2002. Comparison of rice flour pasting properties using brabender viscoamylograph and rapid visco analyser for evaluating cooked rice texture. Starch 54:350-357. Lindeboom N, Chang PR, Tyler RT. 2004. Analytical, biochemical and physicochemical aspects of starch granule size, with emphasis on small granule starches: A review. Starch 56:89-99. Lineback DR. 1984. The starch granule organization and properties. Bakers digest 58:16-21. Liu H, Lelievre J, Ayoung-chee W. 1991. A study of starch gelatinization using differential scanning calorimetry, X-ray, and birefringence measurements. Carbohydrate Res 210:79-87. Lu S, Chen LN, Lii CY. 1997. Correlations between the fine structure, physicochemical properties, and retrogradation of amylopectins from Taiwan rice varieties. Cereal Chem 74:34-39. Manners DJ. 1989. Recent developments in our understanding of amylopectin structure. Carbohydr Polym 87-112. Maurice TJ, Slade L, Sirett RR, Page CM. 1985. Polysaccharide-water interaction : Thermal behavior of rice starch. In :Simatos D, Multon JL, editor. Properties of water in food. The Netherlands: Martinus Nijhoff Pulishers. P211-227. Miles MJ, Morris VJ, Orford PD, Ring SG. 1985. The roles of amylose and amylopectin in the gelation and retrogradation of starch. Carbohydr Res 135:271-281. Millard MM, Dintzis FR, Willett JL, Klavons JA. 1997. Light-scattering molecular weights and intrinsic viscosities of processed waxy maize starches in 90% dimethyl sulfoxide and H2O. Cereal Chem 74:687-691. Mizukami H, Hizukuri S, Takeda Y. 1996. Structure and pasting properties of starches from new characteristic rice cultivars. Oyo Toshisu Kagaku 43:15-23. Morris VJ. 1990. Starch gelation and retrogradation. Trends in Food Sci and Techn (1990,July)2-6. Morrison WR, Karkalas J. 1990. Starch: In Dey PM (Ed). Methods in Plant Biochemistry vol 2:pp323-352. Morrison WR, Laignelet B. 1983. An improved colorimeteric procedure for determining apparent and total amylose in cereal and other starches. J Cereal Sci 1:9-20. Mua JP, Jackson DS. 1997. Fine structures of corn amylose and amylopectin fraction with various molecular weights . J Agric Food Chem 45:3840-3847. MurugesanG. Hizukuri S. Fukuda M. 1992. Structure and properties of waxy rice (IR29) starch during development of the grain. Carbohydr Res 223:235-242. Nakamura Y, Sakural A, Inaba Y, Kimura K, Iwasawa N, Nagamine T. 2002. The fine structure of amylopectin in endosperm from Asia cultivated rice can be largely classified into two class. Starch 54:117-131. Noda T, Nishiba Y, Sato T, Suda I. 2003. Properties of starch from several low-amylose rice cultivars. Cereal Chem 80:193-197. Noosuk P, Hill SE, Farhat IA, Mitchell JR, Pradipasena P. 2005. Relationship between viscoelastic properties and starch structure in rice from Thailand. Starch 57:587-598. Okuda M, Aramaki I, Koseki T, Satoh H, Hashizume K. 2005. Structure characteristics, properties, and in vitro digestibility of rice. Cereal Chem 82:361-368. Oostergetel GT, Vanbruggen EFJ. 1989. On the origin of a low-angle spacing in starch. Starch 41:331-335. Ortega-Ojeda FE, Larsson H, Eliasson AC. 2003. On the dispersion and small-amplitude oscillation measurements of high amylopectin potato starch. Starch 55:121-130. Perez CM, Villareal CP, Juliano BO, Biliaderis CG. 1993. Amylopectin-staling of cooked nonwaxy milled rices and starch gels. Cereal Chem 70:567-571. Qi X, Tester RF, Snape CE, Ansell R. 2003. Molecular basis of the gelatinization and swelling characteristics of waxy rice starches grown in the same location during the same season. J Cereal Sci 37:363-376. Radhika-Reddy K, Ali SZ, Bhattacharya. 1993. The fine structure of rice-starch amylopectin and its relation to the textrue of cooked rice. Carbohydr Polym 22:267-275. Ramesh M, Ali SZ, Bhattacharya KR. 1999. Starch components in hot-water soluble and insoluble fraction of rice flour. Starch 51:308-310. Ramesh M, Bhattacharya KR, Mitchell JR. 2000. Developments in understanding the basis of cooked-rice texture. Critical Reviews in Food Sci and Nutri 40:449-460. Ring SG. 1985. Some studies on starch gelation. Starch 37:80-83. Ring SG, Colonna P, I’anson KJ, Kalichevsky MT, Miles MJ, Morris VJ, Orford PD. 1987. The gelation and crystallisation of amylopectin. Carbohydr Res 162:277-293. Robin JP, Mercier C, Charbonniere R, Guilbot A. 1974. Lintnerized starches. Gel filtration and enzymatic studies of insoluble residues from prolonged acid treatment of potato starch. Cereal Chem 51:389-406. Roger P, Colonna P. 1993. Evidence of the presence of lagre aggregates contaminating amylose solutions. Carbohydr Polym 21:83-89. Ross AS, Walker CE, Booth RI, Orth RA, Wrigley CW. 1987. The Rapid ViscoAnalyser: a new technique for the evaluation of sprout damage. Cereal Food World 32:827-829. Sahai D, Jackson DS. 1999. Enthalpic transitions in native starch granule. Cereal Chem 76:444-448. Sargeant JG. 1982. Determination of amylose: amylopectin ratios of starches. Starch 34:89-92. Sequchi M, Hayashi M, Suzuki Y, Sano Y, Hirano HY. 2003. Role of amylose in the maintenances of the configuration of rice starch granule. Starch 55:524-528. Sieevert D, Wursch P. 1993. Amylose chain association based on differentical scanning calorimetry. J Food Sci 58:1332-1345. Silverio J, Fredriksson H, Andersson R, Eliasson AC, Aman P. 2000. The effect of temperature cycling on the amylopectin retrogradation of starches with different amylopectin unit-chain length distribution . Carbohyd Polym 42:175-184. Singh N, Sodhi NS, Kaur M, Saxena SK. 2003. Physico-chemical, morphological, thermal, cooking and textural properties of chalky and translucent rice kermels. Food Chem 82:433-439. Slade L, Levine H. 1987. Recent advances in starch retrogradation. Recent developments in industrial polysaccharides; Gordon and Breach Sci.; New York. Sodhi NS, Singh N. 2003. Morphological, thermal and rheological properties of starches separated from rice cultivars grown in India. Food Chem 80:99-108. Solomonsson AC, Sundberg B.1994. Amylose content and chain profiles of amylopectin from normal, high amylase and waxy barley. Starch 23:8-11. Steeneken PAM. 1989. Rheological properties of aqueous suspensions of swellon starch granules. Carbohydrate Polym 11:23-42. Suh DS, Jane JL. 2003. Comparison of starch pasting properties at various cooking condition using the micro visco-amylo-graph and the rapid visco analyser. Cereal Chem 80:745-749. Suortti T, Gorenstein MV, Roger P. 1998. Determination of the molecular mass of amylose. J Chromatograph A. 828:515-521. Svegmark K, Hermansson AM. 1990. Shear induced changes in the viscoelastic behavior of heate-treated potato starch. Carbohydr Polym 13:29-45. Takeda Y, Hizukuri S, Juliano BO. 1986. Purification and structure of amylose from rice starch. Carbohydr Res 143:299-308. Takeda Y, Hizukuri S, Takeda C, Suzuki A. 1987. Structures of bracnched molecules of amyloses of various origins and molar fractions of branced and unbranched molecules. Carbohydrate Res 165:139-145. Takeda Y, Maruta N, Hizukuri S, Juliano BO. 1989. Structure of indica rice starches (IR48 and IR64) having intermediate affinity for iodine. Carbohydrate Res 187:287-294. Takeda Y, Tomooka S, Hizukuri S. 1993. Structure of branches and linear molecules of rice amylose. Carbohydr Res 246:267-272. Takeda Y, Shibahara S, Hanashiro I. 2003. Examination of the structure of amylopectin molecules by fluorescent lablling. Carbohydr Res 338:471-475. Taki M, Taki A, Yoshida K, Hisamatsu M, Yamada T. 1987. Analysis of starches by GPC and a new starch sample preparation method. J Japanese Soc Starch Sci 34:279-285. Tako M. Hizukuri S. 2000. Retrogradation mechanism of rice starch. Cereal Chem 77:473-477. Tester RF, Karkalas J, Qi X. 2004. Starch—composition, fine structure and architecture. J Cereal Sci 39:151-165. Tester RF, Morrison WR. 1990a. Swelling and gelatinization of cereal starches. I. Effect of amylopectin, amylose and lipids. Cereal Chem 67:551-557. Tester RF, Morrison WR. 1990b. Swelling and gelatinization of cereal starches. II. Waxy rice starches. Cereal Chem 67:558-563. Tomlins K, Rwiza E, Nyango A, Amour R, Ngendello T, Kapinga R, Ress D, Jolliffe F. 2004. The use of sensory evalution and consumer preference for the selection of sweetpotato cultivars in East Africa. J Sci Food Agri 84:791-799. Tsai ML, Li CF, Lii CY. 1997. Effects of granular structures on the pasting behavior of starches. Cereal Chem 74:750-757. Tsai ML, Lii CY. 2000. Effects of hot-water-soluble components on the rheological properties of rice starch. Starch 52:44-53. Vaneputte GE, Delcour JA. 2004. From sucrose to starch granule to starch physical behaviour: a focus on rice starch. Carbohydrate Polym 58:245-266. Vandeputte GE, Vermeylen R, Geeroms J, Delcour JA. 2003a. Rice starches. I. Structural aspects provide insight into crystallinity characteristics and gelatinisation. J Cereal Sci 38: 43-52. Vandeputte GE, Derycke V, Geeroms J, Delcour JA. 2003b. Rice starches. II. Structural aspects provide insight into swelling and pasting properties. J Cereal Sci 38: 53-59. Vasanthan and Hoover. 1992. Effect of defatting on starch structure and physicochemical properties. Food Chem 45:337-347. Varavinit S, Shobsngob S, Varanyanond W, Chinachoti P, Naivikul O. 2003. Effect of amylose content on gelatinization, retrogradation and pasting properties of flours from different cultivars of Thai rice. Starch 55:410-415. Villareal CP, Hizukuri S, Juliano BO.1997. Amylopectin staling of cooked milled rice and properties of amylopectin and amyloe. Cereal Chem 74:163-167. Walker CE, Ross AS, Wrigley CW and McMaster GJ. 1988. Accelerated starch-paste characterization with the Rapid Visco-Analyzer. Cereal Food World 33:491-494. Wang L, Wang YJ. 2001. Structure and physicochemical properties of acid-thinned corn, potato and rice starch. Starch 53:570-576. Whister RL, Daniel JR. 1984. Molecular structure of starch. In: Starch: chemistry and technology( Roy L. Whister, James N. BeMiller and Eugene F. Paschall, eds.), pp153-182. Academic Press. New York. Xu L, Xie J, Kong X, Bao J. 2004. Analysis of Genotypic and environmental effects on rice starch. 2. Thermal and retrogradation properties. J Agric Food Chem 52:6017-6022. Yamin FF, Lee M, Pollak LM, White PJ. 1999. Thermal properties of starch in corn variants isolated after chemical mutagenesis of inbred line B73. Cereal Chem 76: 175-181. Yano M, Okuno K, Kawakami J, Satoh H, Omura T. 1985. High amylase mutants of rice, Oryza sativa L. Theor Appl Genet 69: 253-257. Yao Y, Zhang JM, Ding XL. 2002. Structure-retrogradation relationship of rice starch in purified starches and cooked rice grain: A statistic investigation. J Agric Food Chem 50:7420-7425 Yoshimoto Y, Tashiro J, Takenouchi T, Takeda Y. 2000. Molecular structure and some physicochemical properties of high-amylose barley starch. Cereal Chem 77:279-285. Yoo SH, Jane JL. 2002. Molecular weights and gyration radii of amylopectins determined by high-performance size-exclusion chromatography equipped with multi-angle laser-light scattering and refractive index detectors. Carbohydr Polym 49:307-314. You SG, Lim ST. 2000. Molecular characterization of corn starch using an aqueous HPSEC-MALLS-RI system under various dissolution and analytical conditions. Cereal Chem 77:303-308. Zhou Z, Robards K, Helliwell S, Blanchard C. 2002. Composition and functional properties of rice. International J Food Sci Technol 37:849-868. Zobel HF. 1988. Molecules to granule: a comprehensive review. Starch 40:1-7. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34597 | - |
dc.description.abstract | 摘要
為探討影響米澱粉膠體特性之因子,選擇18種含有不同直鏈澱粉含量之稻米品種澱粉樣品,分別以質地分析儀(TPA)、快速連續黏度分析儀(RVA)、動態流變儀(DR)量測其回凝膠體性質、糊化成糊性質、膠體之黏彈特性,為增加分析樣品母本之數量,將研究室已有之26種台農67號同源化學誘變稻米之分析結果也一併納入;並同時分析此44種米澱粉(一般品種及化學誘變品系)之視直鏈澱粉含量、去分支澱粉分子(由鏈長由長至短,區分為F1、F2、F3)之鏈長分佈澱粉分子結構參數,進一步利用逐步複迴歸之統計方法,來分析上述澱粉理化性質與分子鏈長之關係。結果發現,經碘呈色法測定18種一般稻米品種之視直鏈澱粉含量為0.30-29.37%,與現有之26種化學誘變稻米品系(1.48-28.48%)同樣為具有直鏈澱粉含量系列分佈之樣品。經去分支處理並以高效能分子篩層析法分析之一般品種與誘變品系稻米澱粉分子其鏈長分佈比較,在F2、F3(支鏈澱粉長鏈與短鏈)兩區分無顯著差異,但F1(直鏈澱粉與支鏈澱粉超長鏈鏈長)區分上之鏈長比較,發現化學誘變品系稻米澱粉之鏈長較長。以膠體之硬度而言,對於TPA測定膠體性質的預測上,直鏈澱粉含量(F1)此一推測變數可提供最大的解釋量為55.8%,是影響膠體特性的主要因素,其餘的四個推測變數分別為直鏈澱粉鏈長、支鏈澱粉長鏈之鏈長、支鏈澱粉長鏈之含量、視直鏈澱粉含量,亦提升部分的解釋力(分別為18.8%、5.5%、4.3%、1.9%),此五個推測變數共可解釋TPA膠體硬度總變異量的86.3%。另外,在膠體之硬度研究上,除了先前選定之澱粉分子鏈長參數外,若再多加入動態流變參數為迴歸模式之推測變數,可發現先前迴歸模式中最大解釋力之直鏈澱粉含量會被於25℃量測之貯存模數值(G’25℃)所取代,其最大解釋力的部份會由55.8%改變為84.3%,整體解釋力由86.3%提升到92.9%。即澱粉在低剪力環境中加熱糊化冷卻之膠體形成初期之強度與澱粉顆粒之強韌度為主要的貢獻因子,滲離之澱粉分子貢獻程度遠低於膨潤顆粒。 | zh_TW |
dc.description.abstract | Abstract
To understand the roles of starch molecules, amylose and amylopectin, plays in gel-forming properties, starch samples with wide range of amylose content from 18 rice cultivars of were selected to study the relationship between molecular structural characters and their gel texture, pasting properties, and viscoelastic properties measured by using texture profile analysis (TPA), rapid visco-analysis (RVA), and dynamic rheolometry (DR). In order to increase sample population for statistical analysis, other 26 starch samples from rice mutant were also included in this study. Chain-length distribution values of starch molecules were used as independent parameters for multivariate stepwise regression analysis to elucidate the correlation between the textural properties mentioned. High-performance size-exclusion chromatographic peaks of debranched starch were designated as F1, F2 and F2 according its eluting order. The results showed that apparent amylose content of starch samples from rice cultivars (ranged from 0.30% to 29.37%) as well as samples from mutants (1.48% to 28.48%) had covered a wide range and had no significant difference in mass ratio of all three fractions and in chain-length of F2 and F3 fractions, but found significant difference in chain-length of F1 (represents the amylose and extra-long chains of amylopectin). The mutants had longer F1 chain-length than selected cultivars. Function of multiple regression analysis could be used to predict TPA hardness using starch molecular structural parameters. Mass ratio of F1 and chain-length of F1explained most of the variance attributed to the models (55.8%, 18.8% ), but chain-length of F2、mass ratio of F2、apparent amylose content had little effect on the amount of variance attributed to the models (5.5%, 4.3%, 1.9%, respectively). The full multiple regression models explained 86.3% of the variation in TPA hardness. After adding dynamic rheologic parameters, storage modular force at 25℃, as extra predictor into the multiple regression model, it will increase most of the variance (from 55.8% to 84.3%) and full variance (from 86.3% to 92.9%). The results implied that the stiffness of swollen starch granules in the starch gel at early stage of gel-forming contributed more than those leached molecules for hardness attributes of starch gel. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T06:17:23Z (GMT). No. of bitstreams: 1 ntu-95-R91641013-1.pdf: 2550667 bytes, checksum: 9f25be3c8bbb5c8c01bb68246505b5ab (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | 目錄
中文摘要………………………………………………… II 英文摘要………………………………………………… IV 壹、前言………………………………………………… 1 貳、文獻回顧…………………………………………… 2 一、稻米分類與稻米品質…………………………… 2 二、澱粉顆粒之組成與結晶特性…………………… 4 三、澱粉的分子結構………………………………… 8 四、澱粉分子鏈長分佈之測定……………………… 15 五、澱粉糊化與回凝性質…………………………… 18 六、澱粉膠體的流變行為…………………………… 20 七、複迴歸分析理論及其應用……………………… 26 參、材料與方法………………………………………… 29 一、實驗材料………………………………………… 29 二、實驗方法………………………………………… 29 肆、結果與討論………………………………………… 34 一、視直鏈澱粉含量………………………………… 34 二、澱粉膠體之物性質地測定……………………… 37 三、快速連續黏度測定……………………………… 40 四、加熱及冷卻過程動態流變性質之變化………… 44 五、澱粉分子之鏈長分析…………………………… 48 六、以統計分析來探討影響米澱粉性質之因素…… 61 伍、結論………………………………………………… 77 陸、參考文獻…………………………………………… 78 | |
dc.language.iso | zh-TW | |
dc.title | 利用不同直鏈澱粉含量之系列稻米品種為模式
探討影響澱粉膠體特性之因子 | zh_TW |
dc.title | Using a series of rice varieties having different amylose content as a model to study the factor affecting gelling properties of starch | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 盧訓,張永和,盧虎生,賴喜美 | |
dc.subject.keyword | 米澱粉,澱粉膠體,澱粉結構, | zh_TW |
dc.subject.keyword | rice starch,starch gel,starch structure, | en |
dc.relation.page | 96 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-01-27 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 食品科技研究所 | zh_TW |
顯示於系所單位: | 食品科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 2.49 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。