Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34398
Title: 以排列法篩選重複測量微陣列晶片資料中的顯著基因
Permutation Methods for Filtering Genes on Microarray Repeated Measurement Data
Authors: Tzu-Chi Lee
李子奇
Advisor: 彭雲明(Yun-ming Pong)
Keyword: 微陣列,重複測量,廣義估計方程式,排列法,多變數排列法,
Microarray,Repeated measurement,Generalized estimating equations,Permutation,Multivariate permutation,
Publication Year : 2006
Degree: 博士
Abstract: 重複測量試驗設計在研究基因調控路徑上有很多好處,重複觀察多個基因在不同時間點上的表現,將可獲得各個基因表現的先後次序之資訊,而發生時間的先後為建構基因的因果關係之基本要件。最近十年來,基因微陣列技術也對生物相關領域的發展有莫大的幫助;然而,目前基因微陣列實驗的成本仍然很高,大部份的重複測量基因微陣列實驗僅有幾個生物體的重複。由於許多重複測量的分析工具都是基於大樣本理論的架構下發展出來的,這些方法在小樣本資料的應用上通常表現不佳,因此也就不適合應用於重複測量基因微陣列資料的分析上,包括近年來廣泛使用於分析相依資料的廣義估計方程式(GEE)方法。
我們提出使用GEE合併「排列法」來處理GEE在小樣本資料表現不佳的問題。電腦模擬的結果顯示,「GEE合併單變數排列法」並使用以模式為基礎的變方估計式(Model-based variance estimator),在控制名義上所宣告的第一型統計錯誤及維持相對高的統計檢定力上有很好的表現。假如樣本數十分少,例如:少於五個時;我們則建議使用「GEE合併多變數排列法」並使用以模式為基礎的變方估計式,進行篩選重複測量微陣列資料上的顯著基因,這樣的分析架構使得在控制一定數目的偽陽性(False positive)下,可維持相對高的偵測顯著基因之能力。
Repeated measurement design has lots of advantages on the investigation of underlying genetic pathway. Recently decade, microarray technology also has great aid of improvements in biology relative fields. Because the cost of microarray is still high, most of microarray experiments with repeated measurement design are only several biology replicates. Many repeated measurement analysis tools are based on asymptotic theory, the small samples performance of these methods are often unsuitable to microarray repeated measurement data including the popular generalized estimating equations (GEE) method for analysis of correlated data. We suggest by using GEE combining with permutation methods to solve the problem. The simulation results show that model-based variance estimator with univariate permutation GEE to analyze repeated measurement microarray data performs well on the controlling of nominal type I error with maintaining relative high power. If the sample sizes are extremely small, e.g., less than 5, we propose to use model-based variance estimator with multivariate permutation methods to control the number of false positive with maintaining relative high detective ability.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34398
Fulltext Rights: 有償授權
Appears in Collections:農藝學系

Files in This Item:
File SizeFormat 
ntu-95-1.pdf
  Restricted Access
960.36 kBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved