Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33538
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝志誠
dc.contributor.authorKuan-Lin Lien
dc.contributor.author李冠霖zh_TW
dc.date.accessioned2021-06-13T04:46:07Z-
dc.date.available2006-07-24
dc.date.copyright2006-07-24
dc.date.issued2006
dc.date.submitted2006-07-17
dc.identifier.citation參考文獻
01.王湧鋒。2004。奈米直寫儀光學頭之奈米壓印製作方法的先導性研究。碩士論文。台北市:台灣大學應用力學研究所。
02.李英群。2005。石英基材之奈米加工技術及其在壓印上的應用。碩士論文。台北市:台灣大學生物產業機電工程研究所。
03.施繼正。2005。奈米壓印之印器與壓印。碩士論文。台北市:台灣大學生物產業機電工程研究所。
04.莊達人。2002。VLSI 製造技術。五版。台北:高立。
05.Austin, M. D. and S. Y. Chou. 2002. Fabrication of 70 nm channel length polymer organic thin-film transistors using nanoimprint lithography. Applied Physics Letters 81:4431-4433.
06.Bailey, T. C., B. J. Choi, M. Colburn, M. Meissl, S. Shaya, J. G., Ekerdt, S. V. Sreenivasan, and C. G. Willson. 2000. Step and flash imprint lithography: Template surface treatment and defect analysis. Journal of Vacuum Science & Technology B 18:3572-3577.
07.Bailey, T. C., B. Smith, B. J. Choi, M. Colburn, M. Meissl, S. V. Sreenivasan, J. G. Ekerdt, and C. G. Willson. 2001. Step and flash imprint lithography: Defect analysis. Journal of Vacuum Science & Technology B 19:2806-2810.
08.Bailey, T. C., S. C. Johnson, S. V. Sreenivasan, J. G. Ekerdt, C. G. Willson, and D. J. Resnick. 2002. Step and flash imprint lithography: An efficient nanoscale printing technology. Journal of Photopolymer Science and Technology 15:481-486.
09.Bailey, T. C., D. J. Resnick, D. Mancini, K. J. Nordquist, W. J. Dauksher, E. Ainley, A. Talin, K. Gehoski, J. H. Baker, B.J. Choi, S. Johnson, M. Colburn, M. Meissl, S. V. Sreenivasan, J. G. Ekerdt, and C. G. Willson. 2002. Template fabrication schemes for step and flash imprint lithography. Microelectronic Engineering 61-2:461-467.
10.Beck, M., M. Graczyk, I. Maximov, E. L. Sarwe, T. G. I. Ling, M. Keil, and L. Montelius. 2002. Improving stamps for 10 nm level wafer scale nanoimprint lithography. Microelectronic Engineering 61-2:441-448.
11.Cao, H., Z. N. Yu, J. Wang, J. O. Tegenfeldt, R. H. Austin, E. Chen, W. Wu, and S. Y. Chou. 2002. Fabrication of 10 nm enclosed nanofluidic channels. Applied Physics Letters 81:174-176.
12.Chou, S. Y., P. R. Krauss, and P. J. Renstrom. 1995. Imprint of Sub-25 Nm Vias and Trenches in Polymers. Applied Physics Letters 67:3114-3116.
13.Chou, S. Y., P. R. Krauss, and P. J. Renstrom. 1996. Nanoimprint lithography. Journal of Vacuum Science & Technology B 14:4129-4133.
14.Chou, S. Y., P. R. Krauss, W. Zhang, L. J. Guo, and L. Zhuang. 1997. Sub-10 nm imprint lithography and applications. Journal of Vacuum Science & Technology B 15:2897-2904.
15.Chou, S. Y., and P. R. Krauss. 1997. Imprint lithography with sub-10 nm feature size and high throughput. Microelectronic Engineering 35:237-240.
16.Chou, S. Y., C. Keimel, J. Gu. 2002. Ultrafast and direct imprint of nanostructures in silicon. Nature 417:835-837.
17.Colburn, M., S. Johnson, M. Stewart, S. Damle, T. C. Bailey, B. Choi, M. Wedlake, T. Michaelson, S. V. Sreenivasan, J. Ekerdt, and C. G. Willson. 1999. Step and Flash Imprint Lithography: A New Approach to High-Resolution Patterning. Proceeding of SPIE 3676:379-391.
18.Colburn, M., T. C. Bailey, B. J. Choi, J. G. Ekerdt, S. V. Sreenivasan, and C. G. Willson. 2001. Development and advantages of step and flash imprint lithography. Solid State Technology 46:67.
19.Dahm, G., I. W. Rangelow, P. Hudek, and H. W. P. Koops. 1995. Quartz Etching for Phase-Shifting Masks. Microelectronic Engineering 27:263-266.
20.Danel, J. S., and G. Delapierre. 1991. Quartz: a material for micordevices. J. Micromech. Microeng 1:197-198.
21.Guo, L. J., P. R. Krauss, and S. Y. Chou. 1997. Nanoscale silicon field effect transistors fabricated using imprint lithography. Applied Physics Letters 71:1881-1883.
22.Hare, E. F., E. G. Shafrin, and W. A. Zisman. 1953. Porperties of Films of Adsorbed Fluorinated Acids. J. Phys. Chem. 58:236.
23.Johnson, S. C., T. C. Bailey, M. D. Dickey, B. J. Smith, E. K. Kim, A. T. Jamieson, N. A. Stacey, J. G. Ekerdt, C. G. Willson. 2003. Advance in step and flash imprint lithography. Proc. of SPIE 5037:197–202.
24.Komuro, M., J. Taniguchi, S. Inoue, N. Kimura, Y. Tokano, H. Hiroshima, and S. Matsui. 2000. Imprint characteristics by photo-induced solidification of liquid polymer. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 39:7075-7079.
25.Komuro, M., Y. Tokano, J. Taniguchi, T. Kawasaki, I. Miyamoto, H. Hiroshima. 2002. Improvement of Imprinted Pattern Uniformity Using Sapphire Mold. Japanese Journal of Applied Physics 41:4182-4185.
26.Kovacs, G. T. A. 1998. Micromachined transducers sourcebook. Second Edition., p34 Boston, Ma.:WCB/McGraw-Hill.
27.Krauss, P. R., and S. Y. Chou. 1997. Nano-compact disks with 400 Gbit/in(2) storage density fabricated using nanoimprint lithography and read with proximal probe. Applied Physics Letters 71:3174-3176.
28.Mancini, D. P., K. A. Gehoski, E. Ainley, K. J. Nordquist, D. J. Resnick, T. C. Bailey, S. V. Sreenivasan, J. G. Ekerdt, and C. G. Willson. 2002. Hydrogen silsesquioxane for direct electron-beam patterning of step and flash imprint lithography templates. Journal of Vacuum Science & Technology B 20:2896-2901.
29.Menz, W., J. Mohr, and O. Paul. 2001. Microsystem Technology. p134.Weinheim: WILEY-VCH.
30.Messmer, C., and J.C. Bilello. 1982. The surface energy of Si, GaAs, and GaP. Journal of Applied Physics. 52(7):4623-4629.
31.Nishino, T., M. Meguro, K. Nakamae, M. Matsushita, and Y. Ueda. 1999. The lowest surface free energy based on -CF3 alignment. Langmuir 15:4321-4323.
32.Pfeiffer, K., F. Reuther, M. Fink, G. Gruetzner, P. Carlberg, I. Maximov, L. Montelius, J. Seekamp, S. Zankovych, C.M. Sotomayor-Torres, H. Schulz, and H.C. Scheer. 2003. A comparison of thermally and photochemically cross-linked polymers for nanoimprinting. Microelectronic Engineering 67-8:266-273.
33.Rangsten, P., C. Hedlund, I. V. Katardjiev, and Y. Backlund. 1998. Etch rates of crystallographic planes in Z-cut quartz - experiments and simulation. Journal of Micromechanics and Microengineering 8:1-6.
34.Resnick, D. J., T. C. Bailey, W. J. Dauksher, D. Mancini, K. J. Nordquist, E. Ainley, K. Gehoski, J. H. Baker, S. Johnson, M. Meissl, S. V. Sreenivasan, J. G. Ekerdt, and C. G. Willson. 2002. High Resolution Templates for Step and Flash Imprint Lithography. Proc. SPIE 4688:205.
35.Resnick, D. J., D. Mancini, W. J. Dauksher, K. Nordquist, T. C. Bailey, S. Johnson, S. V. Sreenivasan, J. G. Ekerdt, and C. G. Willson. 2003. Improved step and flash imprint lithography templates for nanofabrication. Microelectronic Engineering 69:412-419.
36.Silberzan, P., L. Legar, D. Ausserre, and J. J. Benattar. 1991. Silanation of silica surfaces. A new method of constructing pure or mixed monolayers. Langmuir 7:1647-1651.
37.Taniguchi, J., Y. Tokano, I. Miyamoto, M. Komuro, and H. Hiroshima. 2002. Diamond nanoimprint lithography. Nanotechnology 13:592-596.
38.Tripp, C. P., and M. L. Hair. 1995. Direct Observation of the Surface Bonds between Self-Assembled Monolayers of Octadecyltrichlorosilane and Silica Surfaces - a Low-Frequency Ir Study at the Solid-Liquid Interface. Langmuir 11:1215-1219.
39.Van Oss, C. J. 2002. Use of the combined Lifshitz-van der Waals and Lewis acid-base approaches in determining the apolar and polar contributions to surface and interfacial tensions and free energies. J. Adhesion Sci. Technol 16:669-677.
40.Xia, Q. F., C. Keimel, H. X. Ge, Z. N. Yu, W. Wu, and S. Y. Chou. 2003. Ultrafast patterning of nanostructures in polymers using laser assisted nanoimprint lithography. Applied Physics Letters 83:4417-4419.
41.Yu, Z., H. Gao, W. Wu, H. Ge, and S. Y. Chou. 2003. Fabrication of large area subwavelength antireflection structure on Si using trilayer resist nanoimprint lithography and lift off. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures 21(6) :2874-2877.
42.Zhang, W., and S. Y. Chou. 2003. Fabrication of 60-nm transistors on 4-in. wafer using nanoimprint at all lithography levels. Applied Physics Letters 83:1632-1634.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33538-
dc.description.abstract奈米壓印微影技術是一種利用電子束微影技術在母模上製作奈米尺度之圖形,然後將母模壓在塗佈有高分子材料之基材上,以達到圖形轉移目的之微奈米機電製程技術,具有可量產和低成本等優點。
本研究以石英作為母模材料,先後於石英母模上沉積與塗佈厚度約100nm之鉻薄膜與380nm之正光阻ZEP-520A,然後利用電子束微影技術在光阻上定義圖形,經曝光、顯影後,利用高密度活性離子蝕刻系統對鉻、石英進行蝕刻,完成母模之製備,然後利用脫模劑Tridecafluoro-1,1,2,2,tetrahydrooctyl trichlorosilane對石英母模進行表面處理,以在石英母模表面形成脫膜層,降低石英母模之表面能量。
最後,採用光固化奈米壓印技術,將表面處理後之母模壓印到塗佈有負光阻mr-L 6000.3 XPe之矽基材上,以獲得與石英母模一樣之圖形。
研究結果顯示:本研究已成功地在石英母模上完成線寬為80nm~120nm之圖形,並成功地將母模上之圖形移轉到塗佈有負光阻mr-L 6000.3 XPe之基材上。
zh_TW
dc.description.abstractNanoimprint lithography technology (NIL) has emerged as one of the most promising technologies for high-throughput nanoscale patterning. It consists in replicating the patterns of template fabricated by electron beam lithography and reactive ion etching, by deforming physically a cross-linked polymer coated on substrate.
In this research, quartz is selected as the template material because of its transparency and high hardness. First, a 100nm thick Cr as a conducting layer is deposited on quartz template by thermal evaporation. Then, a 380nm thick positive photo-resist ZEP-520A is spin coated on Cr layer.
After E-beam lithography, the quartz template is fabricated by high density plasma reactive ion etch. Afterwards, the surface of the quartz template is treated by Tridecafluoro-1,1,2,2,tetrahydrooctyl trichlorosilane to form a self-assembling release layer.
Finally, photo-curing NIL is accomplished by pressing the surface-treated template to Si-substrate coated with cross-linked polymer mr-L 6000.3Xpe.
This research has successfully defined 60~100nm width resist features. Features of 80~120nm are resolved on the mode and transferred to the polymer after imprinting.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:46:07Z (GMT). No. of bitstreams: 1
ntu-95-R93631012-1.pdf: 5132389 bytes, checksum: 6ec8514817ec0997ceb380cccc5b1d39 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents目錄
誌謝 I
摘要 II
Abstract III
圖目錄 VII
表目錄 XII
第一章 前言 1
第二章 文獻探討 3
2-1 奈米壓印微影技術 3
2-1-1 熱壓型 3
2-1-2 光固化型 8
2-2 石英母模 11
2-2-1 石英加工 11
2-2-1-1濕蝕刻 11
2-2-1-2乾蝕刻 13
2-2-2 母模之製備 15
2-2-2-1 Thin-Cr母模製程 16
2-2-2-2 TCO/Oxide母模製程 19
2-2-2-3 HSQ/TCO母模製程 20
2-2-2-4 Lift-off母模製程 21
2-3 母模之表面處理 23
2-3-1 脫模層之形成 23
2-3-2 表面處理效果之檢驗 26
第三章 材料與方法 27
3-1實驗設備 27
3-2 實驗材料 33
3-2-1 母模材料 33
3-2-2 電子束光阻材料 33
3-2-3 脫模劑 33
3-2-4 壓印基材 33
3-2-5 高分子材料 33
3-3石英母模之製備 34
3-3-1 試片之清洗與烘乾 34
3-3-2 金屬薄膜沉積 34
3-3-3 電子束微影 37
3-3-4 鉻與石英之蝕刻 41
3-4 表面能量之分析 43
3-5 高分子材料之塗佈 46
3-6 壓印 47
第四章 結果與討論 48
4-1 鉻薄膜之沉積 48
4-2 光阻之塗佈與軟烤 49
4-3 電子束微影 50
4-4 鉻之蝕刻 57
4-5 石英之蝕刻 61
4-6 表面處理 65
4-6-1 以液相之OTS與FOTS處理 66
4-6-2 以氣相之FOTS處理 69
4-7 壓印 73
第五章 結論 84
參考文獻 86

圖目錄
圖2-1-1 熱壓型NIL之流程 4
圖2-1-2 NIL之成品 5
圖2-1-3 LADI之流程 6
圖2-1-4 LADI之成品 7
圖2-1-5 S-FIL之流程 8
圖2-1-6 光固化型奈米壓印微影之成品 9
圖2-1-7 光固化奈米壓印微影流程 10
圖2-1-8 光固化型奈米壓印微影技術之成品 10
圖2-2-1 不同晶格矽之濕蝕刻結果 12
圖2-2-2 石英濕蝕刻後之結果 13
圖2-2-3 石英乾蝕刻後之結果 14
圖2-2-4 蝕刻速率與RF power之關係 15
圖2-2-5 蝕刻速率與蝕刻時間之關係 15
圖2-2-6 Thin Cr母模製程 16
圖2-2-7 劑量與關鍵尺寸之關係 17
圖2-2-8 改用ZEP-520後劑量與關鍵尺寸之關係 18
圖2-2-9 Thin-Cr母模製程之成品 18
圖2-2-10 TCO/Oxide母模製程 19
圖2-2-11 TCO/Oxide母模製程之成品 20
圖2-2-12 HSQ/TCO母模製程 20
圖2-2-13 HSQ/TCO母模製程之成品 21
圖2-2-14 Lift-off母模製程 22
圖2-3-1 表面處理之水解過程 24
圖2-3-2 表面處理之吸附過程 24
圖2-3-3 表面處理之聚合縮合過程 25
圖2-3-4 表面處理示意圖 25
圖2-3-5 母模表面之耐久性測試 26
圖2-3-6 母模壓印次數與接觸角之關係 26
圖3-1-1 熱蒸鍍機 29
圖3-1-2 加熱板與旋轉塗佈機 29
圖3-1-3 電子束微影系統 30
圖3-1-4 恆溫水浴槽 30
圖3-1-5 掃描式電子顯微鏡 30
圖3-1-6 表面輪廓儀 31
圖3-1-7 原子力顯微鏡 31
圖3-1-8 高密度活性離子蝕刻系統 31
圖3-1-9 測角儀 32
圖3-1-10 光固化型壓印機 32
圖3-3-1蒸鍍基本原理示意圖 36
圖3-3-2 電子束蒸鍍原理示意圖 37
圖3-3-3(a)傳統紫外光微影 (b)電子束微影 38
圖3-3-4 不同能量的電子在光阻內的散射情形 39
圖3-3-5 背向散射示意圖 40
圖3-3-6 電荷累積效應 40
圖3-4-1 接觸角量測系統架構圖 43
圖3-4-2 固液間接觸角關係圖 44
圖4-1 鉻沉積結果 48
圖4-2 光阻塗佈結果 49
圖4-3-1 電子束往復刻畫之圖形(線寬100nm、週期600nm) 50
圖4-3-2 試片上微影場域分佈與曝光時間 51
圖4-3-3 線寬100nm、週期600nm在不同曝光時間之結果(SEM圖) 51
圖4-3-4 電流300pA,曝光時間0.1μs之結果(SEM圖) 52
圖4-3-5 電流300pA,曝光時間1.6μs之結果(SEM圖) 52
圖4-3-6 電子束單向刻畫之圖形(週期600nm) 53
圖4-3-7 試片上微影場域分佈與曝光時間 53
圖4-3-8 TV模式測量之結果(曝光時間1.7μs,線寬80nm) 54
圖4-3-9 Slow模式測量之結果(曝光時間1.7μs,線寬擴大為120nm) 55
圖4-3-10 TV模式測量之結果(曝光時間0.7μs,線寬60nm) 55
圖4-3-11 Slow模式測量之結果(曝光時間0.7μs,線寬擴大為90nm) 56
圖4-4-1 ZEP-520A之反應性離子蝕刻(蝕刻時間60秒) 58
圖4-4-2 鉻蝕刻後線寬100nm之圖形(曝光時間2.9μs,20000X) 58
圖4-4-3 鉻蝕刻後線寬90nm之圖形(曝光時間2.2μs,20000X) 59
圖4-4-4 鉻蝕刻後線寬80nm之圖形(曝光時間1.7μs,20000X) 59
圖4-4-5 鉻蝕刻後線寬70nm之圖形(曝光時間1.2μs,20000X) 60
圖4-4-6 鉻蝕刻後線寬60nm之圖形(曝光時間0.7μs,20000X) 60
圖4-5-1 石英蝕刻後線寬120nm之圖形(40000X) 61
圖4-5-2 石英蝕刻後線寬110nm之圖形(40000X) 62
圖4-5-3 石英蝕刻後線寬100nm之圖形(40000X) 62
圖4-5-4 石英蝕刻後線寬90nm之圖形(40000X) 63
圖4-5-5 石英蝕刻後線寬80nm之圖形(40000X) 63
圖4-5-6 線寬100nm之石英母模溝槽深度 64
圖4-5-7 線寬80nm之石英母模溝槽深度 64
圖4-6-1 未處理之石英試片與水接觸角 65
圖4-6-2 未處理之石英試片與甘油接觸角 65
圖4-6-3 未處理之石英試片與二碘甲烷接觸角 66
圖4-6-4 以液相之OTS與FOTS處理後之結果比較 69
圖4-6-5 氣相處理腔 70
圖4-6-6 以氣相之FOTS與液相之FOTS處理後之結果比較 72
圖4-7-1(a) 線寬120nm之石英母模(5000X) 74
圖4-7-1(b) 線寬120nm之壓印結果(5000X) 74
圖4-7-2(a) 線寬120nm之石英母模(10000X) 75
圖4-7-2(b) 線寬120之壓印結果(10000X) 75
圖4-7-3(a) 線寬110nm之石英母模(5000X) 76
圖4-7-3(b) 線寬110nm之壓印結果(5000X) 76
圖4-7-4(a) 線寬110nm之石英母模(10000X) 77
圖4-7-4(b) 線寬110nm之壓印結果(10000X) 77
圖4-7-5(a) 線寬100nm之石英母模(5000X) 78
圖4-7-5(b) 線寬100nm之壓印結果(5000X) 78
圖4-7-6(a) 線寬100nm之石英母模(10000X) 79
圖4-7-6(b) 線寬100nm之壓印結果(10000X) 79
圖4-7-7(a) 線寬90nm之石英母模(5000X) 80
圖4-7-7(b) 線寬90nm之壓印結果(5000X) 80
圖4-7-8(a) 線寬90nm之石英母模(10000X) 81
圖4-7-8(b) 線寬90nm之壓印結果(10000X) 81
圖4-7-9(a) 線寬80nm之石英母模(5000X) 82
圖4-7-9(b) 線寬80nm之壓印結果(5000X) 82
圖4-7-10(a) 線寬80nm之石英母模(10000X) 83
圖4-7-10(b) 線寬80nm之壓印結果(10000X) 83

表目錄
表2-1-1 NIL技術之應用 7
表2-2-1 蝕刻液與晶軸方向之濕蝕刻速率 12
表3-4-1 常見測試液體之表能張力參數 45
表4-6-1 未處理石英試片之表面能量 66
表4-6-2 以液相之OTS處理後之結果 67
表4-6-3 以液相之FOTS處理後之結果 67
表4-6-4 以氣相之FOTS處理後之結果 71
dc.language.isozh-TW
dc.subject反應性離子蝕刻zh_TW
dc.subject石英母模zh_TW
dc.subject脫模層zh_TW
dc.subject電子束微影zh_TW
dc.subject光固化型奈米壓印微影zh_TW
dc.subjectElectron-beam lithographyen
dc.subjectRelease layeren
dc.subjectQuartz templateen
dc.subjectPhoto-curing nanoimprint lithography technologyen
dc.subjectReactive Ion Etchen
dc.title光固化型奈米壓印-石英母模製備及表面處理之研究zh_TW
dc.titleFabrication and Surface Treatment of Quartz Template for Photo-Curing Nanoimprint Lithographyen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee施文彬,陳學禮
dc.subject.keyword光固化型奈米壓印微影,石英母模,脫模層,電子束微影,反應性離子蝕刻,zh_TW
dc.subject.keywordPhoto-curing nanoimprint lithography technology,Quartz template,Release layer,Electron-beam lithography,Reactive Ion Etch,en
dc.relation.page90
dc.rights.note有償授權
dc.date.accepted2006-07-18
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
5.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved