Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32613
Title: 以最小平方法訓練叢聚權重模型
Least-Mean-Square Training of Cluster-Weighted Modeling
Authors: I-Chun Lin
林義淳
Advisor: 劉長遠(Cheng-Yuan Liou)
Keyword: 叢聚權重模型,最小平方法,時間序列,函數逼近,
cluster-weighted modeling,least-mean-square,time series,function approximation,
Publication Year : 2006
Degree: 碩士
Abstract: 本論文是以叢聚權重模型為基礎, 其模型可以視為一個優良的函數逼近模型. 藉由估計輸入-輸出資料的機率密度來達成. 叢聚權重模型是以期望-最大化 (EM) 演算法來進行訓練. 在本論文中, 最小平方法 (LMS) 被用來更進一步將叢聚權重模型的訓練結果再度訓練, 且可視為一種互補的訓練方法. 因為期望-最大化演算法和最小平方法的目標函數並不相同, 因此兩者的極小值並不會相同. 最小平方法的訓練結果可以用來初始叢聚權重模型的參數, 因此提供了一個可以避免陷入區域極小值的問題. 本論文包含時間序列的預測, 颱風路徑預測以Lyapunov指數的估測實驗.
This thesis is based on Cluster-Weighted Modeling (CWM), which can be viewed as a novel uni-versal function approximator based on input-output joint density estimation. CWM is trained by Expectation-Maximization (EM) algorithm. In this thesis Least-Mean-Square (LMS) is ap-
plied to further train the model parameters and it can be viewed as a complementary training method for CWM. Due to different objective functions of EM and LMS, the local minimum should not be the same for the two objective functions. The training result of LMS learning can be used to reinitialize CWM’s model parameters which provides an approach to mitigate local minimum problems. Experiments of time-series prediction, hurricane track prediction and
Lyapunov exponents estimation are presented in this thesis.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32613
Fulltext Rights: 有償授權
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-95-1.pdf
  Restricted Access
700.47 kBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved