Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32506
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor顧記華
dc.contributor.authorYi-Cheng Chenen
dc.contributor.author陳依呈zh_TW
dc.date.accessioned2021-06-13T03:53:30Z-
dc.date.available2013-10-07
dc.date.copyright2011-10-07
dc.date.issued2011
dc.date.submitted2011-07-28
dc.identifier.citation[1] Oliveira, P. A.; Colaco, A.; Chaves, R.; Guedes-Pinto, H.; De-La-Cruz, P. L.; Lopes, C. Chemical carcinogenesis. An Acad Bras Cienc 79:593-616; 2007.
[2] Campisi, J.; Yaswen, P. Aging and cancer cell biology, 2009. Aging Cell 8:221-225; 2009.
[3] Jemal, A.; Siegel, R.; Ward, E.; Murray, T.; Xu, J.; Smigal, C.; Thun, M. J. Cancer statistics, 2006. CA Cancer J Clin 56:106-130; 2006.
[4] Hsing, A. W.; Devesa, S. S. Trends and patterns of prostate cancer: what do they suggest? Epidemiol Rev 23:3-13; 2001.
[5] Berquin, I. M.; Min, Y.; Wu, R.; Wu, J.; Perry, D.; Cline, J. M.; Thomas, M. J.; Thornburg, T.; Kulik, G.; Smith, A.; Edwards, I. J.; D'Agostino, R.; Zhang, H.; Wu, H.; Kang, J. X.; Chen, Y. Q. Modulation of prostate cancer genetic risk by omega-3 and omega-6 fatty acids. J Clin Invest 117:1866-1875; 2007.
[6] Nelson, W. G.; De Marzo, A. M.; Isaacs, W. B. Prostate cancer. N Engl J Med 349:366-381; 2003.
[7] Glina, S.; Rivero, M. A.; Morales, A.; Morgentaler, A. Studies on prostatic cancer I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate by Charles Huggins and Clarence V. Hodges. J Sex Med 7:640-644; 2010.
[8] Pilat, M. J.; Kamradt, J. M.; Pienta, K. J. Hormone resistance in prostate cancer. Cancer Metastasis Rev 17:373-381; 1998.
[9] Rubin, M. A.; De Marzo, A. M. Molecular genetics of human prostate cancer. Mod Pathol 17:380-388; 2004.
[10] Kerr, J. F.; Wyllie, A. H.; Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239-257; 1972.
[11] Okada, H.; Mak, T. W. Pathways of apoptotic and non-apoptotic death in tumour cells. Nat Rev Cancer 4:592-603; 2004.
[12] Thompson, C. B. Apoptosis in the pathogenesis and treatment of disease. Science 267:1456-1462; 1995.
[13] Cotter, T. G. Apoptosis and cancer: the genesis of a research field. Nat Rev Cancer 9:501-507; 2009.
[14] Hengartner, M. O. The biochemistry of apoptosis. Nature 407:770-776; 2000.
[15] Schmitz, I.; Kirchhoff, S.; Krammer, P. H. Regulation of death receptor-mediated apoptosis pathways. Int J Biochem Cell Biol 32:1123-1136; 2000.
[16] Letai, A.; Bassik, M. C.; Walensky, L. D.; Sorcinelli, M. D.; Weiler, S.; Korsmeyer, S. J. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2:183-192; 2002.
[17] Chowdhury, I.; Tharakan, B.; Bhat, G. K. Caspases - an update. Comp Biochem Physiol B Biochem Mol Biol 151:10-27; 2008.
[18] Denault, J. B.; Salvesen, G. S. Apoptotic caspase activation and activity. Methods Mol Biol 414:191-220; 2008.
[19] Pop, C.; Salvesen, G. S. Human caspases: activation, specificity, and regulation. J Biol Chem 284:21777-21781; 2009.
[20] Bratton, S. B.; Walker, G.; Srinivasula, S. M.; Sun, X. M.; Butterworth, M.; Alnemri, E. S.; Cohen, G. M. Recruitment, activation and retention of caspases-9 and -3 by Apaf-1 apoptosome and associated XIAP complexes. EMBO J 20:998-1009; 2001.
[21] Riedl, S. J.; Renatus, M.; Schwarzenbacher, R.; Zhou, Q.; Sun, C.; Fesik, S. W.; Liddington, R. C.; Salvesen, G. S. Structural basis for the inhibition of caspase-3 by XIAP. Cell 104:791-800; 2001.
[22] Lavrik, I.; Golks, A.; Krammer, P. H. Death receptor signaling. J Cell Sci 118:265-267; 2005.
[23] Pennarun, B.; Meijer, A.; de Vries, E. G.; Kleibeuker, J. H.; Kruyt, F.; de Jong, S. Playing the DISC: turning on TRAIL death receptor-mediated apoptosis in cancer. Biochim Biophys Acta 1805:123-140.
[24] Russo, M.; Mupo, A.; Spagnuolo, C.; Russo, G. L. Exploring death receptor pathways as selective targets in cancer therapy. Biochem Pharmacol 80:674-682.
[25] Harder, T.; Scheiffele, P.; Verkade, P.; Simons, K. Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol 141:929-942; 1998.
[26] Zeyda, M.; Stulnig, T. M. Lipid Rafts & Co.: an integrated model of membrane organization in T cell activation. Prog Lipid Res 45:187-202; 2006.
[27] Boyle, E. C.; Finlay, B. B. Leaky guts and lipid rafts. Trends Microbiol 13:560-563; 2005.
[28] Gajate, C.; Mollinedo, F. The antitumor ether lipid ET-18-OCH(3) induces apoptosis through translocation and capping of Fas/CD95 into membrane rafts in human leukemic cells. Blood 98:3860-3863; 2001.
[29] Gajate, C.; Mollinedo, F. Cytoskeleton-mediated death receptor and ligand concentration in lipid rafts forms apoptosis-promoting clusters in cancer chemotherapy. J Biol Chem 280:11641-11647; 2005.
[30] Gajate, C.; Mollinedo, F. Edelfosine and perifosine induce selective apoptosis in multiple myeloma by recruitment of death receptors and downstream signaling molecules into lipid rafts. Blood 109:711-719; 2007.
[31] Youle, R. J.; Strasser, A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47-59; 2008.
[32] Brajuskovic, G.; Milic, A. S.; Cerovic, S.; Marjanovic, S.; Knezevic Usaj, S.; Cizmic, M.; Dimitrijevic, J. The Bcl-2 protein family in malignant diseases. Vojnosanit Pregl 61:305-310; 2004.
[33] Coultas, L.; Strasser, A. The role of the Bcl-2 protein family in cancer. Semin Cancer Biol 13:115-123; 2003.
[34] Antonsson, B.; Martinou, J. C. The Bcl-2 protein family. Exp Cell Res 256:50-57; 2000.
[35] Winder, W. W.; Thomson, D. M. Cellular energy sensing and signaling by AMP-activated protein kinase. Cell Biochem Biophys 47:332-347; 2007.
[36] Rossmeisl, M.; Flachs, P.; Brauner, P.; Sponarova, J.; Matejkova, O.; Prazak, T.; Ruzickova, J.; Bardova, K.; Kuda, O.; Kopecky, J. Role of energy charge and AMP-activated protein kinase in adipocytes in the control of body fat stores. Int J Obes Relat Metab Disord 28 Suppl 4:S38-44; 2004.
[37] Alexander, A.; Walker, C. L. The role of LKB1 and AMPK in cellular responses to stress and damage. FEBS Lett 585:952-957.
[38] Inoki, K.; Zhu, T.; Guan, K. L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577-590; 2003.
[39] Gwinn, D. M.; Shackelford, D. B.; Egan, D. F.; Mihaylova, M. M.; Mery, A.; Vasquez, D. S.; Turk, B. E.; Shaw, R. J. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30:214-226; 2008.
[40] Ruderman, N.; Prentki, M. AMP kinase and malonyl-CoA: targets for therapy of the metabolic syndrome. Nat Rev Drug Discov 3:340-351; 2004.
[41] Luo, Z.; Saha, A. K.; Xiang, X.; Ruderman, N. B. AMPK, the metabolic syndrome and cancer. Trends Pharmacol Sci 26:69-76; 2005.
[42] Evans, J. M.; Donnelly, L. A.; Emslie-Smith, A. M.; Alessi, D. R.; Morris, A. D. Metformin and reduced risk of cancer in diabetic patients. BMJ 330:1304-1305; 2005.
[43] Wright, J. L.; Stanford, J. L. Metformin use and prostate cancer in Caucasian men: results from a population-based case-control study. Cancer Causes Control 20:1617-1622; 2009.
[44] Zakikhani, M.; Dowling, R. J.; Sonenberg, N.; Pollak, M. N. The effects of adiponectin and metformin on prostate and colon neoplasia involve activation of AMP-activated protein kinase. Cancer Prev Res (Phila) 1:369-375; 2008.
[45] Hirsch, H. A.; Iliopoulos, D.; Tsichlis, P. N.; Struhl, K. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res 69:7507-7511; 2009.
[46] Ben Sahra, I.; Laurent, K.; Loubat, A.; Giorgetti-Peraldi, S.; Colosetti, P.; Auberger, P.; Tanti, J. F.; Le Marchand-Brustel, Y.; Bost, F. The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene 27:3576-3586; 2008.
[47] Brodsky, J. L. The protective and destructive roles played by molecular chaperones during ERAD (endoplasmic-reticulum-associated degradation). Biochem J 404:353-363; 2007.
[48] Mori, K. Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 101:451-454; 2000.
[49] Harding, H. P.; Zhang, Y.; Ron, D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397:271-274; 1999.
[50] Harding, H. P.; Zhang, Y.; Bertolotti, A.; Zeng, H.; Ron, D. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 5:897-904; 2000.
[51] Harding, H. P.; Novoa, I.; Zhang, Y.; Zeng, H.; Wek, R.; Schapira, M.; Ron, D. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6:1099-1108; 2000.
[52] Haze, K.; Yoshida, H.; Yanagi, H.; Yura, T.; Mori, K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 10:3787-3799; 1999.
[53] Ye, J.; Rawson, R. B.; Komuro, R.; Chen, X.; Dave, U. P.; Prywes, R.; Brown, M. S.; Goldstein, J. L. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell 6:1355-1364; 2000.
[54] Yoshida, H.; Okada, T.; Haze, K.; Yanagi, H.; Yura, T.; Negishi, M.; Mori, K. ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol Cell Biol 20:6755-6767; 2000.
[55] Calfon, M.; Zeng, H.; Urano, F.; Till, J. H.; Hubbard, S. R.; Harding, H. P.; Clark, S. G.; Ron, D. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415:92-96; 2002.
[56] Adachi, Y.; Yamamoto, K.; Okada, T.; Yoshida, H.; Harada, A.; Mori, K. ATF6 is a transcription factor specializing in the regulation of quality control proteins in the endoplasmic reticulum. Cell Struct Funct 33:75-89; 2008.
[57] Yoshida, H.; Matsui, T.; Hosokawa, N.; Kaufman, R. J.; Nagata, K.; Mori, K. A time-dependent phase shift in the mammalian unfolded protein response. Dev Cell 4:265-271; 2003.
[58] McCullough, K. D.; Martindale, J. L.; Klotz, L. O.; Aw, T. Y.; Holbrook, N. J. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 21:1249-1259; 2001.
[59] Puthalakath, H.; O'Reilly, L. A.; Gunn, P.; Lee, L.; Kelly, P. N.; Huntington, N. D.; Hughes, P. D.; Michalak, E. M.; McKimm-Breschkin, J.; Motoyama, N.; Gotoh, T.; Akira, S.; Bouillet, P.; Strasser, A. ER stress triggers apoptosis by activating BH3-only protein Bim. Cell 129:1337-1349; 2007.
[60] Yamaguchi, H.; Wang, H. G. CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells. J Biol Chem 279:45495-45502; 2004.
[61] Urano, F.; Wang, X.; Bertolotti, A.; Zhang, Y.; Chung, P.; Harding, H. P.; Ron, D. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287:664-666; 2000.
[62] Yoneda, T.; Imaizumi, K.; Oono, K.; Yui, D.; Gomi, F.; Katayama, T.; Tohyama, M. Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J Biol Chem 276:13935-13940; 2001.
[63] Zhang, C.; Kawauchi, J.; Adachi, M. T.; Hashimoto, Y.; Oshiro, S.; Aso, T.; Kitajima, S. Activation of JNK and transcriptional repressor ATF3/LRF1 through the IRE1/TRAF2 pathway is implicated in human vascular endothelial cell death by homocysteine. Biochem Biophys Res Commun 289:718-724; 2001.
[64] Rao, R. V.; Hermel, E.; Castro-Obregon, S.; del Rio, G.; Ellerby, L. M.; Ellerby, H. M.; Bredesen, D. E. Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation. J Biol Chem 276:33869-33874; 2001.
[65] Morishima, N.; Nakanishi, K.; Takenouchi, H.; Shibata, T.; Yasuhiko, Y. An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J Biol Chem 277:34287-34294; 2002.
[66] Scorrano, L.; Oakes, S. A.; Opferman, J. T.; Cheng, E. H.; Sorcinelli, M. D.; Pozzan, T.; Korsmeyer, S. J. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300:135-139; 2003.
[67] Zong, W. X.; Li, C.; Hatzivassiliou, G.; Lindsten, T.; Yu, Q. C.; Yuan, J.; Thompson, C. B. Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis. J Cell Biol 162:59-69; 2003.
[68] Morishima, N.; Nakanishi, K.; Tsuchiya, K.; Shibata, T.; Seiwa, E. Translocation of Bim to the endoplasmic reticulum (ER) mediates ER stress signaling for activation of caspase-12 during ER stress-induced apoptosis. J Biol Chem 279:50375-50381; 2004.
[69] Elyaman, W.; Terro, F.; Suen, K. C.; Yardin, C.; Chang, R. C.; Hugon, J. BAD and Bcl-2 regulation are early events linking neuronal endoplasmic reticulum stress to mitochondria-mediated apoptosis. Brain Res Mol Brain Res 109:233-238; 2002.
[70] Wootz, H.; Hansson, I.; Korhonen, L.; Lindholm, D. XIAP decreases caspase-12 cleavage and calpain activity in spinal cord of ALS transgenic mice. Exp Cell Res 312:1890-1898; 2006.
[71] Ito, Y.; Pandey, P.; Mishra, N.; Kumar, S.; Narula, N.; Kharbanda, S.; Saxena, S.; Kufe, D. Targeting of the c-Abl tyrosine kinase to mitochondria in endoplasmic reticulum stress-induced apoptosis. Mol Cell Biol 21:6233-6242; 2001.
[72] Li, J.; Lee, B.; Lee, A. S. Endoplasmic reticulum stress-induced apoptosis: multiple pathways and activation of p53-up-regulated modulator of apoptosis (PUMA) and NOXA by p53. J Biol Chem 281:7260-7270; 2006.
[73] Reimertz, C.; Kogel, D.; Rami, A.; Chittenden, T.; Prehn, J. H. Gene expression during ER stress-induced apoptosis in neurons: induction of the BH3-only protein Bbc3/PUMA and activation of the mitochondrial apoptosis pathway. J Cell Biol 162:587-597; 2003.
[74] Naka, K.; Muraguchi, T.; Hoshii, T.; Hirao, A. Regulation of reactive oxygen species and genomic stability in hematopoietic stem cells. Antioxid Redox Signal 10:1883-1894; 2008.
[75] Barve, A.; Khor, T. O.; Nair, S.; Reuhl, K.; Suh, N.; Reddy, B.; Newmark, H.; Kong, A. N. Gamma-tocopherol-enriched mixed tocopherol diet inhibits prostate carcinogenesis in TRAMP mice. Int J Cancer 124:1693-1699; 2009.
[76] Khansari, N.; Shakiba, Y.; Mahmoudi, M. Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Pat Inflamm Allergy Drug Discov 3:73-80; 2009.
[77] Khandrika, L.; Kumar, B.; Koul, S.; Maroni, P.; Koul, H. K. Oxidative stress in prostate cancer. Cancer Lett 282:125-136; 2009.
[78] Juang, H. H. Modulation of mitochondrial aconitase on the bioenergy of human prostate carcinoma cells. Mol Genet Metab 81:244-252; 2004.
[79] Acharya, A.; Das, I.; Chandhok, D.; Saha, T. Redox regulation in cancer: a double-edged sword with therapeutic potential. Oxid Med Cell Longev 3:23-34; 2010.
[80] Junttila, M. R.; Li, S. P.; Westermarck, J. Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival. FASEB J 22:954-965; 2008.
[81] Mebratu, Y.; Tesfaigzi, Y. How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer? Cell Cycle 8:1168-1175; 2009.
[82] Nguyen, H. T.; Hsieh, M. H.; Gaborro, A.; Tinloy, B.; Phillips, C.; Adam, R. M. JNK/SAPK and p38 SAPK-2 mediate mechanical stretch-induced apoptosis via caspase-3 and -9 in NRK-52E renal epithelial cells. Nephron Exp Nephrol 102:e49-61; 2006.
[83] Liu, B.; Yu, H. M.; Huang, J.; Hsu, W. Co-opted JNK/SAPK signaling in Wnt/beta-catenin-induced tumorigenesis. Neoplasia 10:1004-1013; 2008.
[84] Maroni, P. D.; Koul, S.; Meacham, R. B.; Koul, H. K. Mitogen Activated Protein kinase signal transduction pathways in the prostate. Cell Commun Signal 2:5; 2004.
[85] Detchokul, S.; Frauman, A. G. Recent developments in prostate cancer biomarker research: therapeutic implications. Br J Clin Pharmacol 71:157-174; 2011.
[86] Simons, J. W.; Sacks, N. Granulocyte-macrophage colony-stimulating factor-transduced allogeneic cancer cellular immunotherapy: the GVAX vaccine for prostate cancer. Urol Oncol 24:419-424; 2006.
[87] Weide, B.; Garbe, C.; Rammensee, H. G.; Pascolo, S. Plasmid DNA- and messenger RNA-based anti-cancer vaccination. Immunol Lett 115:33-42; 2008.
[88] Wang, H.; Yang, G.; Timme, T. L.; Fujita, T.; Naruishi, K.; Frolov, A.; Brenner, M. K.; Kadmon, D.; Thompson, T. C. IL-12 gene-modified bone marrow cell therapy suppresses the development of experimental metastatic prostate cancer. Cancer Gene Ther 14:819-827; 2007.
[89] Fang, J. Y. Histone deacetylase inhibitors, anticancerous mechanism and therapy for gastrointestinal cancers. J Gastroenterol Hepatol 20:988-994; 2005.
[90] Nemec, K. N.; Khaled, A. R. Therapeutic modulation of apoptosis: targeting the BCL-2 family at the interface of the mitochondrial membrane. Yonsei Med J 49:689-697; 2008.
[91] Ledgerwood, E. C.; Morison, I. M. Targeting the apoptosome for cancer therapy. Clin Cancer Res 15:420-424; 2009.
[92] MacKenzie, S. H.; Clark, A. C. Targeting cell death in tumors by activating caspases. Curr Cancer Drug Targets 8:98-109; 2008.
[93] Galsky, M. D.; Eisenberger, M.; Moore-Cooper, S.; Kelly, W. K.; Slovin, S. F.; DeLaCruz, A.; Lee, Y.; Webb, I. J.; Scher, H. I. Phase I trial of the prostate-specific membrane antigen-directed immunoconjugate MLN2704 in patients with progressive metastatic castration-resistant prostate cancer. J Clin Oncol 26:2147-2154; 2008.
[94] Kluetz, P. G.; Figg, W. D.; Dahut, W. L. Angiogenesis inhibitors in the treatment of prostate cancer. Expert Opin Pharmacother 11:233-247; 2010.
[95] Bajaj, G. K.; Zhang, Z.; Garrett-Mayer, E.; Drew, R.; Sinibaldi, V.; Pili, R.; Denmeade, S. R.; Carducci, M. A.; Eisenberger, M. A.; DeWeese, T. L. Phase II study of imatinib mesylate in patients with prostate cancer with evidence of biochemical relapse after definitive radical retropubic prostatectomy or radiotherapy. Urology 69:526-531; 2007.
[96] Marks, P. A.; Richon, V. M.; Breslow, R.; Rifkind, R. A. Histone deacetylase inhibitors as new cancer drugs. Curr Opin Oncol 13:477-483; 2001.
[97] Walkinshaw, D. R.; Yang, X. J. Histone deacetylase inhibitors as novel anticancer therapeutics. Curr Oncol 15:237-243; 2008.
[98] Luger, K.; Mader, A. W.; Richmond, R. K.; Sargent, D. F.; Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251-260; 1997.
[99] Strahl, B. D.; Allis, C. D. The language of covalent histone modifications. Nature 403:41-45; 2000.
[100] Cress, W. D.; Seto, E. Histone deacetylases, transcriptional control, and cancer. J Cell Physiol 184:1-16; 2000.
[101] Struhl, K. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev 12:599-606; 1998.
[102] Gregory, P. D.; Wagner, K.; Horz, W. Histone acetylation and chromatin remodeling. Exp Cell Res 265:195-202; 2001.
[103] Mahlknecht, U.; Hoelzer, D. Histone acetylation modifiers in the pathogenesis of malignant disease. Mol Med 6:623-644; 2000.
[104] Glozak, M. A.; Sengupta, N.; Zhang, X.; Seto, E. Acetylation and deacetylation of non-histone proteins. Gene 363:15-23; 2005.
[105] Park, J. H.; Jung, Y.; Kim, T. Y.; Kim, S. G.; Jong, H. S.; Lee, J. W.; Kim, D. K.; Lee, J. S.; Kim, N. K.; Bang, Y. J. Class I histone deacetylase-selective novel synthetic inhibitors potently inhibit human tumor proliferation. Clin Cancer Res 10:5271-5281; 2004.
[106] Zhu, P.; Huber, E.; Kiefer, F.; Gottlicher, M. Specific and redundant functions of histone deacetylases in regulation of cell cycle and apoptosis. Cell Cycle 3:1240-1242; 2004.
[107] Khochbin, S.; Verdel, A.; Lemercier, C.; Seigneurin-Berny, D. Functional significance of histone deacetylase diversity. Curr Opin Genet Dev 11:162-166; 2001.
[108] Richon, V. M.; Emiliani, S.; Verdin, E.; Webb, Y.; Breslow, R.; Rifkind, R. A.; Marks, P. A. A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc Natl Acad Sci U S A 95:3003-3007; 1998.
[109] Marks, P. A.; Breslow, R. Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol 25:84-90; 2007.
[110] Mann, B. S.; Johnson, J. R.; Cohen, M. H.; Justice, R.; Pazdur, R. FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 12:1247-1252; 2007.
[111] Camphausen, K.; Tofilon, P. J. Inhibition of histone deacetylation: a strategy for tumor radiosensitization. J Clin Oncol 25:4051-4056; 2007.
[112] Jones, L. K.; Saha, V. Chromatin modification, leukaemia and implications for therapy. Br J Haematol 118:714-727; 2002.
[113] Kuendgen, A.; Lubbert, M. Current status of epigenetic treatment in myelodysplastic syndromes. Ann Hematol 87:601-611; 2008.
[114] Okegawa, T.; Li, Y.; Pong, R. C.; Hsieh, J. T. Cell adhesion proteins as tumor suppressors. J Urol 167:1836-1843; 2002.
[115] Yilmaz, M.; Christofori, G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev 28:15-33; 2009.
[116] Pawelek, J. M.; Chakraborty, A. K. The cancer cell--leukocyte fusion theory of metastasis. Adv Cancer Res 101:397-444; 2008.
[117] Lawson, C.; Wolf, S. ICAM-1 signaling in endothelial cells. Pharmacol Rep 61:22-32; 2009.
[118] van de Stolpe, A.; van der Saag, P. T. Intercellular adhesion molecule-1. J Mol Med 74:13-33; 1996.
[119] Vestweber, D. Adhesion and signaling molecules controlling the transmigration of leukocytes through endothelium. Immunol Rev 218:178-196; 2007.
[120] Sokoloff, M. H.; Tso, C. L.; Kaboo, R.; Taneja, S.; Pang, S.; deKernion, J. B.; Belldegrun, A. S. In vitro modulation of tumor progression-associated properties of hormone refractory prostate carcinoma cell lines by cytokines. Cancer 77:1862-1872; 1996.
[121] Wolff, J. M.; Stephenson, R. N.; Chisholm, G. D.; Habib, F. K. Levels of circulating intercellular adhesion molecule-1 in patients with metastatic cancer of the prostate and benign prostatic hyperplasia. Eur J Cancer 31A:339-341; 1995.
[122] Gilmore, T. D. The Rel/NF-kappaB signal transduction pathway: introduction. Oncogene 18:6842-6844; 1999.
[123] Pahl, H. L. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18:6853-6866; 1999.
[124] Eferl, R.; Wagner, E. F. AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 3:859-868; 2003.
[125] Sweeney, C.; Li, L.; Shanmugam, R.; Bhat-Nakshatri, P.; Jayaprakasan, V.; Baldridge, L. A.; Gardner, T.; Smith, M.; Nakshatri, H.; Cheng, L. Nuclear factor-kappaB is constitutively activated in prostate cancer in vitro and is overexpressed in prostatic intraepithelial neoplasia and adenocarcinoma of the prostate. Clin Cancer Res 10:5501-5507; 2004.
[126] Edwards, J.; Krishna, N. S.; Mukherjee, R.; Bartlett, J. M. The role of c-Jun and c-Fos expression in androgen-independent prostate cancer. J Pathol 204:153-158; 2004.
[127] Zerbini, L. F.; Wang, Y.; Cho, J. Y.; Libermann, T. A. Constitutive activation of nuclear factor kappaB p50/p65 and Fra-1 and JunD is essential for deregulated interleukin 6 expression in prostate cancer. Cancer Res 63:2206-2215; 2003.
[128] Andela, V. B.; Schwarz, E. M.; Puzas, J. E.; O'Keefe, R. J.; Rosier, R. N. Tumor metastasis and the reciprocal regulation of prometastatic and antimetastatic factors by nuclear factor kappaB. Cancer Res 60:6557-6562; 2000.
[129] Levine, L.; Lucci, J. A., 3rd; Pazdrak, B.; Cheng, J. Z.; Guo, Y. S.; Townsend, C. M., Jr.; Hellmich, M. R. Bombesin stimulates nuclear factor kappa B activation and expression of proangiogenic factors in prostate cancer cells. Cancer Res 63:3495-3502; 2003.
[130] Shukla, S.; MacLennan, G. T.; Fu, P.; Patel, J.; Marengo, S. R.; Resnick, M. I.; Gupta, S. Nuclear factor-kappaB/p65 (Rel A) is constitutively activated in human prostate adenocarcinoma and correlates with disease progression. Neoplasia 6:390-400; 2004.
[131] Garner, A. E.; Smith, D. A.; Hooper, N. M. Visualization of detergent solubilization of membranes: implications for the isolation of rafts. Biophys J 94:1326-1340; 2008.
[132] Chamberlain, L. H.; Gould, G. W. The vesicle- and target-SNARE proteins that mediate Glut4 vesicle fusion are localized in detergent-insoluble lipid rafts present on distinct intracellular membranes. J Biol Chem 277:49750-49754; 2002.
[133] Keller, P.; Simons, K. Cholesterol is required for surface transport of influenza virus hemagglutinin. J Cell Biol 140:1357-1367; 1998.
[134] Uslu, R.; Borsellino, N.; Frost, P.; Garban, H.; Ng, C. P.; Mizutani, Y.; Belldegrun, A.; Bonavida, B. Chemosensitization of human prostate carcinoma cell lines to anti-fas-mediated cytotoxicity and apoptosis. Clin Cancer Res 3:963-972; 1997.
[135] Affar el, B.; Shah, R. G.; Dallaire, A. K.; Castonguay, V.; Shah, G. M. Role of poly(ADP-ribose) polymerase in rapid intracellular acidification induced by alkylating DNA damage. Proc Natl Acad Sci U S A 99:245-250; 2002.
[136] Raphael, K. R.; Sabu, M.; Kumar, K. H.; Kuttan, R. Inhibition of N-Methyl N'-nitro-N-nitrosoguanidine (MNNG) induced gastric carcinogenesis by Phyllanthus amarus extract. Asian Pac J Cancer Prev 7:299-302; 2006.
[137] Wang, Z. B.; Li, J. X.; Zhu, L. Q.; Niu, F. L.; Cui, W. [Inhibiting effects of Panax notoginseng extracts on proliferation of GES-1 cells and MNNG-transformed GES-1 cells]. Zhong Xi Yi Jie He Xue Bao 2:445-449; 2004.
[138] Cipriani, G.; Rapizzi, E.; Vannacci, A.; Rizzuto, R.; Moroni, F.; Chiarugi, A. Nuclear poly(ADP-ribose) polymerase-1 rapidly triggers mitochondrial dysfunction. J Biol Chem 280:17227-17234; 2005.
[139] Dodoni, G.; Canton, M.; Petronilli, V.; Bernardi, P.; Di Lisa, F. Induction of the mitochondrial permeability transition by the DNA alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine. Sorting cause and consequence of mitochondrial dysfunction. Biochim Biophys Acta 1658:58-63; 2004.
[140] Andrabi, S. A.; Kim, N. S.; Yu, S. W.; Wang, H.; Koh, D. W.; Sasaki, M.; Klaus, J. A.; Otsuka, T.; Zhang, Z.; Koehler, R. C.; Hurn, P. D.; Poirier, G. G.; Dawson, V. L.; Dawson, T. M. Poly(ADP-ribose) (PAR) polymer is a death signal. Proc Natl Acad Sci U S A 103:18308-18313; 2006.
[141] Aalinkeel, R.; Nair, M. P.; Sufrin, G.; Mahajan, S. D.; Chadha, K. C.; Chawda, R. P.; Schwartz, S. A. Gene expression of angiogenic factors correlates with metastatic potential of prostate cancer cells. Cancer Res 64:5311-5321; 2004.
[142] Wang, J.; Yi, J. Cancer cell killing via ROS: to increase or decrease, that is the question. Cancer Biol Ther 7:1875-1884; 2008.
[143] Garber, K. Purchase of Aton spotlights HDAC inhibitors. Nat Biotechnol 22:364-365; 2004.
[144] Richon, V. M.; Sandhoff, T. W.; Rifkind, R. A.; Marks, P. A. Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci U S A 97:10014-10019; 2000.
[145] Sandor, V.; Senderowicz, A.; Mertins, S.; Sackett, D.; Sausville, E.; Blagosklonny, M. V.; Bates, S. E. P21-dependent g(1)arrest with downregulation of cyclin D1 and upregulation of cyclin E by the histone deacetylase inhibitor FR901228. Br J Cancer 83:817-825; 2000.
[146] Zhang, Y.; Adachi, M.; Kawamura, R.; Imai, K. Bmf is a possible mediator in histone deacetylase inhibitors FK228 and CBHA-induced apoptosis. Cell Death Differ 13:129-140; 2006.
[147] Zhao, Y.; Tan, J.; Zhuang, L.; Jiang, X.; Liu, E. T.; Yu, Q. Inhibitors of histone deacetylases target the Rb-E2F1 pathway for apoptosis induction through activation of proapoptotic protein Bim. Proc Natl Acad Sci U S A 102:16090-16095; 2005.
[148] Insinga, A.; Monestiroli, S.; Ronzoni, S.; Gelmetti, V.; Marchesi, F.; Viale, A.; Altucci, L.; Nervi, C.; Minucci, S.; Pelicci, P. G. Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nat Med 11:71-76; 2005.
[149] Nebbioso, A.; Clarke, N.; Voltz, E.; Germain, E.; Ambrosino, C.; Bontempo, P.; Alvarez, R.; Schiavone, E. M.; Ferrara, F.; Bresciani, F.; Weisz, A.; de Lera, A. R.; Gronemeyer, H.; Altucci, L. Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells. Nat Med 11:77-84; 2005.
[150] Rosato, R. R.; Almenara, J. A.; Grant, S. The histone deacetylase inhibitor MS-275 promotes differentiation or apoptosis in human leukemia cells through a process regulated by generation of reactive oxygen species and induction of p21CIP1/WAF1 1. Cancer Res 63:3637-3645; 2003.
[151] Carew, J. S.; Giles, F. J.; Nawrocki, S. T. Histone deacetylase inhibitors: mechanisms of cell death and promise in combination cancer therapy. Cancer Lett 269:7-17; 2008.
[152] Jeong, J. W.; Bae, M. K.; Ahn, M. Y.; Kim, S. H.; Sohn, T. K.; Bae, M. H.; Yoo, M. A.; Song, E. J.; Lee, K. J.; Kim, K. W. Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation. Cell 111:709-720; 2002.
[153] Deroanne, C. F.; Bonjean, K.; Servotte, S.; Devy, L.; Colige, A.; Clausse, N.; Blacher, S.; Verdin, E.; Foidart, J. M.; Nusgens, B. V.; Castronovo, V. Histone deacetylases inhibitors as anti-angiogenic agents altering vascular endothelial growth factor signaling. Oncogene 21:427-436; 2002.
[154] Rodriguez-Gonzalez, A.; Lin, T.; Ikeda, A. K.; Simms-Waldrip, T.; Fu, C.; Sakamoto, K. M. Role of the aggresome pathway in cancer: targeting histone deacetylase 6-dependent protein degradation. Cancer Res 68:2557-2560; 2008.
[155] Kawaguchi, Y.; Kovacs, J. J.; McLaurin, A.; Vance, J. M.; Ito, A.; Yao, T. P. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115:727-738; 2003.
[156] Hideshima, T.; Bradner, J. E.; Wong, J.; Chauhan, D.; Richardson, P.; Schreiber, S. L.; Anderson, K. C. Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proc Natl Acad Sci U S A 102:8567-8572; 2005.
[157] Nawrocki, S. T.; Carew, J. S.; Pino, M. S.; Highshaw, R. A.; Andtbacka, R. H.; Dunner, K., Jr.; Pal, A.; Bornmann, W. G.; Chiao, P. J.; Huang, P.; Xiong, H.; Abbruzzese, J. L.; McConkey, D. J. Aggresome disruption: a novel strategy to enhance bortezomib-induced apoptosis in pancreatic cancer cells. Cancer Res 66:3773-3781; 2006.
[158] Jagannath, S.; Dimopoulos, M. A.; Lonial, S. Combined proteasome and histone deacetylase inhibition: A promising synergy for patients with relapsed/refractory multiple myeloma. Leuk Res 34:1111-1118; 2010.
[159] Fang, Y.; Hu, Y.; Wu, P.; Wang, B.; Tian, Y.; Xia, X.; Zhang, Q.; Chen, T.; Jiang, X.; Ma, Q.; Xu, G.; Wang, S.; Zhou, J.; Ma, D.; Meng, L. Synergistic efficacy in human ovarian cancer cells by histone deacetylase inhibitor TSA and proteasome inhibitor PS-341. Cancer Invest 29:247-252.
[160] Gaymes, T. J.; Padua, R. A.; Pla, M.; Orr, S.; Omidvar, N.; Chomienne, C.; Mufti, G. J.; Rassool, F. V. Histone deacetylase inhibitors (HDI) cause DNA damage in leukemia cells: a mechanism for leukemia-specific HDI-dependent apoptosis? Mol Cancer Res 4:563-573; 2006.
[161] Lee, J. H.; Choy, M. L.; Ngo, L.; Foster, S. S.; Marks, P. A. Histone deacetylase inhibitor induces DNA damage, which normal but not transformed cells can repair. Proc Natl Acad Sci U S A 107:14639-14644; 2010.
[162] Park, M. A.; Zhang, G.; Martin, A. P.; Hamed, H.; Mitchell, C.; Hylemon, P. B.; Graf, M.; Rahmani, M.; Ryan, K.; Liu, X.; Spiegel, S.; Norris, J.; Fisher, P. B.; Grant, S.; Dent, P. Vorinostat and sorafenib increase ER stress, autophagy and apoptosis via ceramide-dependent CD95 and PERK activation. Cancer Biol Ther 7:1648-1662; 2008.
[163] Hideshima, T.; Anderson, K. C. Molecular mechanisms of novel therapeutic approaches for multiple myeloma. Nat Rev Cancer 2:927-937; 2002.
[164] Baumeister, P.; Dong, D.; Fu, Y.; Lee, A. S. Transcriptional induction of GRP78/BiP by histone deacetylase inhibi
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32506-
dc.description.abstract癌症占人類死亡疾病的第一位,其中,前列腺癌名列全球男性癌症的第三位,在北美及歐洲地區更為首位,而因目前台灣民眾的生活習慣愈來愈傾向西方歐美國家,前列腺癌更列入國家男性十大癌症死因之一。儘管前列腺癌發生率及威脅性如此高,但目前治療策略卻仍有限,賀爾蒙阻斷療法、放射線治療、手術直接切除、及化學療法是現今最常使用的前列腺癌治療方法。前列腺癌細胞依賴雄性素存活,若阻斷前列腺癌細胞接受雄性素,可有效縮小腫瘤,達到治療之效。然而,接受賀爾蒙療法一段時間後,會誘發雄性素不依賴型癌細胞產生,而使此種治療效果失效。另外,因為癌症轉移的特性,使手術切除也逐漸失去重要性。至於化療藥物在前列腺癌的治療上則一直沒有明顯的進展。因此,發展一種對癌細胞有特異性的化療藥物,可謂目前當務之急的任務。在這裡,我們選用PC-3這株雄性素不依賴型的人類前列腺癌細胞,來對各種系列的天然物與化學合成物,作抗癌作用的篩選及機轉的探討。另一方面,探究前列腺癌細胞的癌化作用與發展的過程,實為重要的抗癌研究基礎,針對此項,我們也嘗試去探討一個致癌物–N-methyl-N'-nitro-N-nitrosoguanidine (MNNG),在前列腺癌細胞所引發的癌化作用過程裡有哪些重要的分子參與。因此,本論文第一部分為天然物cryptocaryone在雄性素不依賴型前列腺癌細胞PC-3的抗癌作用機轉的研究,cryptocaryone藉由引發死亡受體的自體聚集作用且分布在脂筏與非脂筏部分,去引發DISC複合體形成於細胞膜內側,進而將死亡訊息傳遞進細胞內,造成細胞凋亡的結果。第二部分為一個致癌物–MNNG,在PC-3分別能促進癌化作用與細胞死亡的作用機制探討。5zh_TW
dc.description.abstractCancer plays first place of death in human diseases. Among these cancers, prostate cancer plays third place of global men’s cancers. As the lifestyle of Taiwanese is more similar to Western’s, the mortality of Taiwanese’s prostate cancer is higher than ever. Even so high mortality, prostate cancer therapy is still limited to hormone disruption therapy, radiation therapy, castration, and chemotherapy.
Since prostate cancer is characteristics of dependending on androgen, hormone disruption therapy is an effective anti-cancer strategy. However, prostate cancer cells will develop to be androgen-independent, which conveys resistance to hormone therapy. Besides, prostate surgery is always limited according to the property of cancer metastasis. As for chemotherapy, there are some drawbacks such as effectiveness and toxicity. Therefore, the targeted strategy in prostate cancer therapy is so waiting developed as to solve these problems. Here, we tested several nature products and chemical compounds and furtherly identified the detailed anti-cancer mechanism in androgen-independent prostate cancer cell PC-3 on part-I and part-III. We hope the research can be served as a reference of developing targeted strategy. On part II, we investigated the different results and mechanisms of a carcinogen, MNNG at low and high dose in PC-3 cells, which is also an important basis on prostate cancer research.
Part-I is about the anti-cancer mechanism of a nature product, cryptocaryone, in androgen-independent prostate cancer cell, PC-3. Cryptocaryone can induce death receptor clustering on lipid raft and non-lipid raft fractions to activate extrinsic apoptotic pathway. The detailed mechanism includes the formation of DISC complex and caspase-8 activation.
Part-II is about the mechanism of low and high dose MNNG in androgen-independent prostate cancer cell PC-3. Low dose MNNG can activate NF-
en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:53:30Z (GMT). No. of bitstreams: 1
ntu-100-D95423006-1.pdf: 5601880 bytes, checksum: 92c3ed72b3c669837d6c5539e0186774 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents縮寫表…………………………………………………………………………….. 1
中文摘要………………………………………………………………………….. 3
英文摘要………………………………………………………………………….. 5
研究動機與目的………………………………………………………………….. 7
文獻回顧………………………………………………………………………….. 8
實驗材料與方法………………………………………………………………….. 24
第一章 天然物cryptocayrone引起人類前列腺癌細胞PC-3細胞凋亡的機 轉探討……………………………………………………………………..………
33
中文摘要……………………………………………………………….... 34
英文摘要………………………………………………………………… 35
緒言……………………………………………………………………… 36
結果……………………………………………………………………… 37
討論與結論……………………………………………………………… 40
第二章N-methyl-N'-nitro-N-nitrosoguanidine在雄性素不依賴型前列腺癌細胞PC-3的作用機轉:ICAM-1及AMPK的角色……………………………... 42
中文摘要………………………………………………………………… 43
英文摘要………………………………………………………………… 44
緒言…………………………………………………………………….... 46
結果……………………………………………………………………… 48
討論與結論……………………………………………………………… 51
第三章 HDAC抑制劑–WJ25591在人類荷爾蒙不依賴型前列腺癌細胞展現有效的抗癌作用………………………………………………………………….. 54
中文摘要………………………………………………………………… 55
英文摘要………………………………………………………………… 56
緒言……………………………………………………………………… 58
結果……………………………………………………………………… 60
討論與結論……………………………………………………………… 63
總結與展望……………………………………………………………………….. 67
參考文獻………………………………………………………………………….. 68
附圖……………………………………………………………………………….. 81
附表……………………………………………………………………………….. 88
圖………………………………………………………………………………….. 90
dc.language.isozh-TW
dc.title抗癌活性成分在人類前列腺癌的作用機轉研究zh_TW
dc.titleAnti-cancer mechanism study of several active compounds in human prostate cancersen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree博士
dc.contributor.oralexamcommittee吳志中,蕭哲志,黃聰龍,楊家榮
dc.subject.keyword前列腺癌,死亡受體,脂筏,細胞附著分子,zh_TW
dc.subject.keywordprostate cancer,Fas,lipid raft,ICAM-1,HDAC,en
dc.relation.page120
dc.rights.note有償授權
dc.date.accepted2011-07-28
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
5.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved