Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32419
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor孔繁璐(Fan-Lu Kung)
dc.contributor.authorYi-Chi Tsengen
dc.contributor.author曾奕淇zh_TW
dc.date.accessioned2021-06-13T03:48:15Z-
dc.date.available2011-08-03
dc.date.copyright2006-08-03
dc.date.issued2006
dc.date.submitted2006-07-26
dc.identifier.citationAdler, R.R., A.K. Ng, and N.S. Rote. 1995. Monoclonal antiphosphatidylserine antibody inhibits intercellular fusion of the choriocarcinoma line, JAR. Biol Reprod. 53:905-10.
Arenas, J., J.C. Rubio, M.A. Martin, and Y. Campos. 1998. Biological roles of L-carnitine in perinatal metabolism. Early Hum Dev. 53 Suppl:S43-50.
Bargen-Lockner, C., P. Hahn, and B. Wittmann. 1981. Plasma carnitine in pregnancy. Am J Obstet Gynecol. 140:412-4.
Benirschke, K., J.C. Spinosa, M.J. McGinniss, A. Marchevsky, and J. Sanchez. 2000. Partial molar transformation of the placenta of presumably monozygotic twins. Pediatr Dev Pathol. 3:95-100.
Berezowski, V., D. Miecz, M. Marszalek, A. Broer, S. Broer, R. Cecchelli, and A.N. K. 2004. Involvement of OCTN2 and B0,+ in the transport of carnitine through an in vitro model of the blood-brain barrier. J Neurochem. 91:860-72.
Blond, J.L., D. Lavillette, V. Cheynet, O. Bouton, G. Oriol, S. Chapel-Fernandes, B. Mandrand, F. Mallet, and F.L. Cosset. 2000. An envelope glycoprotein of the human endogenous retrovirus HERV-W is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor. J Virol. 74:3321-9.
Bremer, J. 1983. Carnitine--metabolism and functions. Physiol Rev. 63:1420-80.
Chang, C.W., H.C. Chuang, C. Yu, T.P. Yao, and H. Chen. 2005. Stimulation of GCMa transcriptional activity by cyclic AMP/protein kinase A signaling is attributed to CBP-mediated acetylation of GCMa. Mol Cell Biol. 25:8401-14.
Ciarimboli, G., H. Koepsell, M. Iordanova, V. Gorboulev, B. Durner, D. Lang, B. Edemir, R. Schroter, T. Van Le, and E. Schlatter. 2005. Individual PKC-phosphorylation sites in organic cation transporter 1 determine substrate selectivity and transport regulation. J Am Soc Nephrol. 16:1562-70.
Crocker, I.P., S. Barratt, M. Kaur, and P.N. Baker. 2001. The in-vitro characterization of induced apoptosis in placental cytotrophoblasts and syncytiotrophoblasts. Placenta. 22:822-30.
Enomoto, A., M.F. Wempe, H. Tsuchida, H.J. Shin, S.H. Cha, N. Anzai, A. Goto, A. Sakamoto, T. Niwa, Y. Kanai, M.W. Anders, and H. Endou. 2002. Molecular identification of a novel carnitine transporter specific to human testis. Insights into the mechanism of carnitine recognition. J Biol Chem. 277:36262-71.
Frendo, J.L., L. Cronier, G. Bertin, J. Guibourdenche, M. Vidaud, D. Evain-Brion, and A. Malassine. 2003. Involvement of connexin 43 in human trophoblast cell fusion and differentiation. J Cell Sci. 116:3413-21.
Ganapathy, M.E., W. Huang, D.P. Rajan, A.L. Carter, M. Sugawara, K. Iseki, F.H. Leibach, and V. Ganapathy. 2000. beta-lactam antibiotics as substrates for OCTN2, an organic cation/carnitine transporter. J Biol Chem. 275:1699-707.
Grube, M., H.E. Meyer zu Schwabedissen, D. Prager, J. Haney, K.U. Moritz, K. Meissner, D. Rosskopf, L. Eckel, M. Bohm, G. Jedlitschky, and H.K. Kroemer. 2006. Uptake of cardiovascular drugs into the human heart: expression, regulation, and function of the carnitine transporter OCTN2 (SLC22A5). Circulation. 113:1114-22.
Grube, M., H.M. Schwabedissen, K. Draber, D. Prager, K.U. Moritz, K. Linnemann, C. Fusch, G. Jedlitschky, and H.K. Kroemer. 2005. Expression, localization, and function of the carnitine transporter octn2 (slc22a5) in human placenta. Drug Metab Dispos. 33:31-7.
Holmes, L.B. 1988. Teratogenic effects of anticonvulsant drugs. J Pediatr. 112:579-81.
Huang, W., S.N. Shaikh, M.E. Ganapathy, U. Hopfer, F.H. Leibach, A.L. Carter, and V. Ganapathy. 1999. Carnitine transport and its inhibition by sulfonylureas in human kidney proximal tubular epithelial cells. Biochem Pharmacol. 58:1361-70.
Ikeguchi, M., S. Ohoro, Y. Maeda, K. Yamaguchi, K. Fukuda, H. Shirai, A. Kondo, S. Tsujitani, and N. Kaibara. 2003. Protein and gene expression of tumor-associated antigen RCAS1 in esophageal squamous cell carcinoma. Oncol Rep. 10:1891-4.
Kato, Y., Y. Sai, K. Yoshida, C. Watanabe, T. Hirata, and A. Tsuji. 2005. PDZK1 directly regulates the function of organic cation/carnitine transporter OCTN2. Mol Pharmacol. 67:734-43.
Kato, Y., C. Watanabe, and A. Tsuji. 2006. Regulation of drug transporters by PDZ adaptor proteins and nuclear receptors. Eur J Pharm Sci. 27:487-500.
Keryer, G., M. Yassenko, J.C. Labbe, A. Castro, S.M. Lohmann, D. Evain-Brion, and K. Tasken. 1998. Mitosis-specific phosphorylation and subcellular redistribution of the RIIalpha regulatory subunit of cAMP-dependent protein kinase. J Biol Chem. 273:34594-602.
Kitano, T., H. Iizasa, I.W. Hwang, Y. Hirose, T. Morita, T. Maeda, and E. Nakashima. 2004. Conditionally immortalized syncytiotrophoblast cell lines as new tools for study of the blood-placenta barrier. Biol Pharm Bull. 27:753-9.
Knerr, I., E. Beinder, and W. Rascher. 2002. Syncytin, a novel human endogenous retroviral gene in human placenta: evidence for its dysregulation in preeclampsia and HELLP syndrome. Am J Obstet Gynecol. 186:210-3.
Knerr, I., S.W. Schubert, C. Wich, K. Amann, T. Aigner, T. Vogler, R. Jung, J. Dotsch, W. Rascher, and S. Hashemolhosseini. 2005. Stimulation of GCMa and syncytin via cAMP mediated PKA signaling in human trophoblastic cells under normoxic and hypoxic conditions. FEBS Lett. 579:3991-8.
Koepsell, H., and H. Endou. 2004. The SLC22 drug transporter family. Pflugers Arch. 447:666-76.
Koepsell, H., B.M. Schmitt, and V. Gorboulev. 2003. Organic cation transporters. Rev Physiol Biochem Pharmacol. 150:36-90.
Kudo, Y., and C.A. Boyd. 2002. Changes in expression and function of syncytin and its receptor, amino acid transport system B(0) (ASCT2), in human placental choriocarcinoma BeWo cells during syncytialization. Placenta. 23:536-41.
Kudo, Y., C.A. Boyd, I.L. Sargent, and C.W. Redman. 2003. Hypoxia alters expression and function of syncytin and its receptor during trophoblast cell fusion of human placental BeWo cells: implications for impaired trophoblast syncytialisation in pre-eclampsia. Biochim Biophys Acta. 1638:63-71.
Kudo, Y., C.A. Boyd, I.L. Sargent, C.W. Redman, J.M. Lee, and T.C. Freeman. 2004. An analysis using DNA microarray of the time course of gene expression during syncytialization of a human placental cell line (BeWo). Placenta. 25:479-88.
Lahjouji, K., I. Elimrani, J. Lafond, L. Leduc, I.A. Qureshi, and G.A. Mitchell. 2004. L-Carnitine transport in human placental brush-border membranes is mediated by the sodium-dependent organic cation transporter OCTN2. Am J Physiol Cell Physiol. 287:C263-9.
Lamhonwah, A.M., C.A. Ackerley, A. Tilups, V.D. Edwards, R.J. Wanders, and I. Tein. 2005. OCTN3 is a mammalian peroxisomal membrane carnitine transporter. Biochem Biophys Res Commun. 338:1966-72.
Lee, X., J.C. Keith, Jr., N. Stumm, I. Moutsatsos, J.M. McCoy, C.P. Crum, D. Genest, D. Chin, C. Ehrenfels, R. Pijnenborg, F.A. van Assche, and S. Mi. 2001. Downregulation of placental syncytin expression and abnormal protein localization in pre-eclampsia. Placenta. 22:808-12.
Liu, F., M.J. Soares, and K.L. Audus. 1997. Permeability properties of monolayers of the human trophoblast cell line BeWo. Am J Physiol. 273:C1596-604.
Longo, N., C. Amat di San Filippo, and M. Pasquali. 2006. Disorders of carnitine transport and the carnitine cycle. Am J Med Genet C Semin Med Genet. 142C:77-85.
Lu, K., H. Nishimori, Y. Nakamura, K. Shima, and M. Kuwajima. 1998. A missense mutation of mouse OCTN2, a sodium-dependent carnitine cotransporter, in the juvenile visceral steatosis mouse. Biochem Biophys Res Commun. 252:590-4.
Lyden, T.W., A.K. Ng, and N.S. Rote. 1993. Modulation of phosphatidylserine epitope expression by BeWo cells during forskolin treatment. Placenta. 14:177-86.
McCleskey, E.W., and W. Almers. 1985. The Ca channel in skeletal muscle is a large pore. Proc Natl Acad Sci U S A. 82:7149-53.
Mirshahi, M., E. Ayani, C. Nicolas, N. Golestaneh, P. Ferrari, F. Valamanesh, and M.K. Agarwal. 2002. The blockade of mineralocorticoid hormone signaling provokes dramatic teratogenesis in cultured rat embryos. Int J Toxicol. 21:191-9.
Novak, M., E.F. Monkus, D. Chung, and M. Buch. 1981. Carnitine in the perinatal metabolism of lipids. I. Relationship between maternal and fetal plasma levels of carnitine and acylcarnitines. Pediatrics. 67:95-100.
Ohashi, R., I. Tamai, H. Yabuuchi, J.I. Nezu, A. Oku, Y. Sai, M. Shimane, and A. Tsuji. 1999. Na(+)-dependent carnitine transport by organic cation transporter (OCTN2): its pharmacological and toxicological relevance. J Pharmacol Exp Ther. 291:778-84.
Pattillo, R.A., and G.O. Gey. 1968. The establishment of a cell line of human hormone-synthesizing trophoblastic cells in vitro. Cancer Res. 28:1231-6.
Rozen, S., and H. Skaletsky. 2000. Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol. 132:365-86.
Rytting, E., and K.L. Audus. 2005. Novel Organic Cation Transporter 2-Mediated Carnitine Uptake in Placental Choriocarcinoma (BeWo) Cells. J Pharmacol Exp Ther. 312:192-8.
Schmidt-Sommerfeld, E., D. Penn, and H. Wolf. 1981. The influence of maternal fat metabolism on fetal carnitine levels. Early Hum Dev. 5:233-42.
Siliprandi, N., L. Sartorelli, M. Ciman, and F. Di Lisa. 1989. Carnitine: metabolism and clinical chemistry. Clin Chim Acta. 183:3-11.
Sivan, E., B. Feldman, M. Dolitzki, N. Nevo, N. Dekel, and A. Karasik. 1995. Glyburide crosses the placenta in vivo in pregnant rats. Diabetologia. 38:753-6.
Sloan, J.L., and S. Mager. 1999. Cloning and functional expression of a human Na(+) and Cl(-)-dependent neutral and cationic amino acid transporter B(0+). J Biol Chem. 274:23740-5.
Stulc, J. 1989. Extracellular transport pathways in the haemochorial placenta. Placenta. 10:113-9.
Sung, J.H., K.H. Yu, J.S. Park, T. Tsuruo, D.D. Kim, C.K. Shim, and S.J. Chung. 2005. Saturable distribution of tacrine into the striatal extracellular fluid of the rat: evidence of involvement of multiple organic cation transporters in the transport. Drug Metab Dispos. 33:440-8.
Tamai, I., R. Ohashi, J. Nezu, H. Yabuuchi, A. Oku, M. Shimane, Y. Sai, and A. Tsuji. 1998. Molecular and functional identification of sodium ion-dependent, high affinity human carnitine transporter OCTN2. J Biol Chem. 273:20378-82.
Tamai, I., R. Ohashi, J.I. Nezu, Y. Sai, D. Kobayashi, A. Oku, M. Shimane, and A. Tsuji. 2000. Molecular and functional characterization of organic cation/carnitine transporter family in mice. J Biol Chem. 275:40064-72.
Taylor, R.N., E.D. Newman, and S.A. Chen. 1991. Forskolin and methotrexate induce an intermediate trophoblast phenotype in cultured human choriocarcinoma cells. Am J Obstet Gynecol. 164:204-10.
Thiele, I.G., K.E. Niezen-Koning, A.H. van Gennip, and J.G. Aarnoudse. 2004. Increased plasma carnitine concentrations in preeclampsia. Obstet Gynecol. 103:876-80.
van den Eijnde, S.M., M.J. van den Hoff, C.P. Reutelingsperger, W.L. van Heerde, M.E. Henfling, C. Vermeij-Keers, B. Schutte, M. Borgers, and F.C. Ramaekers. 2001. Transient expression of phosphatidylserine at cell-cell contact areas is required for myotube formation. J Cell Sci. 114:3631-42.
Vardhana, P.A., and N.P. Illsley. 2002. Transepithelial glucose transport and metabolism in BeWo choriocarcinoma cells. Placenta. 23:653-60.
Vignery, A. 2000. Osteoclasts and giant cells: macrophage-macrophage fusion mechanism. Int J Exp Pathol. 81:291-304.
Wagner, C.A., U. Lukewille, S. Kaltenbach, I. Moschen, A. Broer, T. Risler, S. Broer, and F. Lang. 2000. Functional and pharmacological characterization of human Na(+)-carnitine cotransporter hOCTN2. Am J Physiol Renal Physiol. 279:F584-91.
Watanabe, K., T. Sawano, T. Endo, M. Sakata, and J. Sato. 2002a. Studies on intestinal absorption of sulpiride (2): transepithelial transport of sulpiride across the human intestinal cell line Caco-2. Biol Pharm Bull. 25:1345-50.
Watanabe, K., T. Sawano, T. Jinriki, and J. Sato. 2004. Studies on intestinal absorption of sulpiride (3): intestinal absorption of sulpiride in rats. Biol Pharm Bull. 27:77-81.
Watanabe, K., T. Sawano, K. Terada, T. Endo, M. Sakata, and J. Sato. 2002b. Studies on intestinal absorption of sulpiride (1): carrier-mediated uptake of sulpiride in the human intestinal cell line Caco-2. Biol Pharm Bull. 25:885-90.
Wice, B., D. Menton, H. Geuze, and A.L. Schwartz. 1990. Modulators of cyclic AMP metabolism induce syncytiotrophoblast formation in vitro. Exp Cell Res. 186:306-16.
Wu, S.P., M.K. Shyu, H.H. Liou, C.S. Gau, and C.J. Lin. 2004. Interaction between anticonvulsants and human placental carnitine transporter. Epilepsia. 45:204-10.
Wu, X., P.D. Prasad, F.H. Leibach, and V. Ganapathy. 1998. cDNA sequence, transport function, and genomic organization of human OCTN2, a new member of the organic cation transporter family. Biochem Biophys Res Commun. 246:589-95.
Xuan, W., A.M. Lamhonwah, C. Librach, K. Jarvi, and I. Tein. 2003. Characterization of organic cation/carnitine transporter family in human sperm. Biochem Biophys Res Commun. 306:121-8.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32419-
dc.description.abstract肉鹼 (L-carnitine) 在長鏈脂肪酸進入粒腺體以進行貝他氧化 (beta-oxidation) 反應及維持細胞內輔酵素A (CoA) 的恆定性上扮演了重要的角色。由於胎兒生合成肉鹼的能力尚未成熟因此需要主動獲取肉鹼以維持正常的功能。已知肉鹼主要是經由第二新型有機陽離子轉運蛋白 (organic cation transporter novel type II) 進入胎兒內。這種轉運蛋白對肉鹼有高親合力且其對肉鹼之攝取現象是依鈉性的。為了研究胎盤融合化的過程對第二新型有機陽離子轉運蛋白的表現以及功能之影響,實驗中使用源於人類絨毛膜癌細胞的BeWo細胞,BeWo細胞可藉由forskolin的刺激而產生融合化的現象,因此可作為一個胎盤的in vitro模式。
在現階段的實驗結果中發現當BeWo細胞加入100 uM的forskolin產生融合化的現象時,利用反轉錄-聚合酶連鎖反應進行分析,可以觀察到第二新型有機陽離子轉運蛋白的轉錄量有降低之情形。在以氚標幟之肉鹼觀察BeWo細胞對肉鹼的攝取量時,可以得知BeWo細胞攝取肉鹼是依鈉性且會飽和的,其動力學參數為:Km = 27.1 ± 11.8 uM,Vmax = 702 ± 132 pmol/30 min/mg protein,並帶有一個不飽和常數k,其值為6.02 ± 1.21 uL/30 min/mg protein,而在加入forskolin後這些動力學參數的值均有改變 (Km = 72.6 ± 5.4 uM,Vmax = 1805 ± 420 pmol/30 min/mg protein,k = 2.25 ± 0.59 uL/30 min/mg protein),因此可以推斷在加入forskolin後所引起的融合化會使第二新型有機陽離子轉運蛋白的表現以及作用有所改變。另外我們亦探討一些藥物在forskolin所引起的BeWo細胞融合化中對肉鹼的半數抑制濃度 (IC50) 是否會改變以了解藥物對第二新型有機陽離子轉運蛋白之作用是否會受細胞融合化所影響。
zh_TW
dc.description.abstractL-carnitine is important for beta-oxidation of fatty acids and intracellular coenzyme A homeostasis. Given that the carnitine biosynthesis is immature in fetal organisms, it is pivotal for fetal organism to acquire carnitine to maintain normal functions. It is known that carnitine is mainly transported across placenta via organic cation transporter novel type II (OCTN2), a high affinity and sodium dependent carnitine transporter. BeWo cell is derived from human choriocarcinoma and can be induced to differentiate into syncytiotrophoblast by forskolin and has therefore been used as an in vitro placenta model. In the current study, BeWo treated with forskolin was used as a model for syncytiotrophoblast. Results from RT-PCR analysis showed that the expression level of OCTN2 was downregulated after 100 uM forskolin treatment. Uptake of 3H-labeled L-carnitine was sodium dependent and saturable (Km = 27.1 ± 11.8 uM, Vmax = 702 ± 132 pmol/30 min/mg protein) with a non-saturable constant k equals to 6.02 ± 1.21 (uL/30 min/mg protein). The values of kinetic parameters changed after forskolin treatment (Km = 72.6 ± 5.4 uM, Vmax = 1805 ± 420 pmol/30 min/mg protein, k = 2.25 ± 0.59 uL/30 min/mg protein). These results suggest that the expression level and function of OCTN2 are both changed during syncytialisation. IC50 for several drugs of carnitine uptake were also determinated to understand the effect on drug-OCTN2 interaction during syncytialisation induced by forskolin.en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:48:15Z (GMT). No. of bitstreams: 1
ntu-95-R93423001-1.pdf: 1242969 bytes, checksum: 4f24e59369275ec0d604f184545a121a (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents第一章 緒論 1
一、肉鹼 (carnitine) 1
二、與肉鹼相關的轉運蛋白 1
三、有機陽離子轉運蛋白 (organic cation transporter) 2
四、第二新型有機陽離子轉運蛋白 3
五、胎盤與胎盤屏障 4
六、胎盤細胞融合化 (syncytialisation) 5
七、第二新型有機陽離子轉運蛋白與藥物之關係 6
第二章 實驗目的 12
第三章 實驗材料 13
一、BeWo細胞培養 13
二、絨毛性腺激素 (β-hCG) 濃度測定 14
三、蛋白質濃度測定 (Bio-Rad DC protein assay) 14
四、肉鹼在BeWo細胞的攝取量研究 (uptake syudy) 、Transepithelial electrical resistance (TEER) 及BeWo細胞對肉鹼的穿透性 (transport study) 14
五、反轉錄及聚合酶鏈鎖反應分析 (reverse transcription polymerase chain reaction analysis,RT-PCR analysis) 15
六、藥物在BeWo細胞中對肉鹼的半數抑制濃度 (50% inhibitory concentration) 研究 18
七、其 他 18
第四章 實驗方法 20
一、BeWo細胞培養 20
二、絨毛性腺激素 (β-hCG) 濃度測定 20
三、蛋白質濃度測定 (Bio-Rad DC protein assay) 21
四、肉鹼在BeWo細胞的攝取量研究 22
五、Transepithelial electrical resistance (TEER) 23
六、BeWo細胞對肉鹼的穿透性試驗 (transport study) 23
七、反轉錄及聚合酶鏈鎖反應分析 (reverse transcription polymerase chain reaction analysis,RT-PCR analysis) 24
八、藥物在BeWo細胞中對肉鹼的半數抑制濃度 (50% inhibitory concentration) 研究 26
九、數據分析 27
第五章 實驗結果 29
第六章 結果討論 33
第七章 結 論 38
參考文獻
原始數據
圖目錄
圖一 肉鹼在脂肪酸氧化作用中的循環 8
圖二 人類SLC22A轉運蛋白家族之種系發生樹 (phylogenetic tree) 8
圖三 人類第二新型有機陽離子轉運蛋白 (hOCTN2) 之結構預測示意圖 9
圖四 第二新型有機陽離子轉運蛋白之突變位置與結構相對關係示意圖 9
圖五 BeWo細胞培養在細胞培養盤內槽 (cell culture insert) 中的TEER值 39
圖六 在BeWo細胞進行肉鹼穿透性試驗所得的肉鹼之穿透量對時間的關係圖 40
圖七 在BeWo細胞進行肉鹼穿透性試驗所得之肉鹼permeability對時間的關係 41
圖八 BeWo細胞在100μM forskolin以及溶媒(DMSO)處理後的β-hCG分泌量與時間關係圖 42
圖九 藉反轉錄-聚合酶連鎖反應放大GAPDH、syncytin和SLC22A5的mRNA與PCR循環數之關係 43
圖十 BeWo細胞在經由forskolin處理後利用反轉錄-聚合酶連鎖反應來觀察GAPDH的變化量之洋菜膠電泳及分析圖 44
圖十一 BeWo細胞在經由forskolin處理後利用反轉錄-聚合酶連鎖反應來觀察syncytin的變化量之洋菜膠電泳及分析圖 45
圖十二 時間和肉鹼攝取量在BeWo細胞中的關係圖 46
圖十三 BeWo細胞在經由forskolin處理後利用反轉錄-聚合酶連鎖反應來觀察SLC22A5的變化量之洋菜膠電泳及分析圖 47
圖十四 肉鹼濃度和肉鹼攝取量在BeWo細胞中的關係圖 48
圖十五 肉鹼濃度和肉鹼攝取量在經過forskolin處理過的BeWo細胞中之關係圖 49
圖十六 肉鹼濃度和肉鹼攝取量在forskolin處理的BeWo細胞中與對照之比較圖 50
圖十七 BeWo細胞在有無forskolin處理之肉鹼攝取在不同抑制劑存在下的百分比研究 51

表目錄
表一 SLC22A轉運蛋白家族之組織分布及功能特性表 10
表二 會造成原發性肉鹼缺乏症的第二新型有機陽離子轉運蛋白之突變位置表 11
表三 BeWo細胞在有無forskolin處理時的動力學參數值對照表 52
表四 各抑制劑對有無forskolin處理之BeWo細胞的肉鹼半數抑制濃度 53
dc.language.isozh-TW
dc.title探討Forskolin在人類絨毛膜癌細胞(BeWo)中對第二新型有機陽離子轉運蛋白之表現及作用的影響zh_TW
dc.titleEFFECT OF FORSKOLIN ON THE EXPRESSION AND
FUNCTION OF ORGANIC CATION TRANSPORTER
NOVEL TYPE II (OCTN2) IN HUMAN CHORIOCARCINOMA
BeWo CELLS
en
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.coadvisor林君榮(Chun-Jung Lin)
dc.contributor.oralexamcommittee李財坤(Tsai-Kun Li),黃麗華(Lih-Hwa Hwang)
dc.subject.keyword胎盤,第二新型有機陽離子轉運蛋白,細胞融合化,zh_TW
dc.subject.keywordOCTN2,Placenta,BeWo,syncytialisation,forskolin,en
dc.relation.page67
dc.rights.note有償授權
dc.date.accepted2006-07-26
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  目前未授權公開取用
1.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved