請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31863完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 孫璐西 | |
| dc.contributor.author | Wen-Chien Lu | en |
| dc.contributor.author | 呂玟蒨 | zh_TW |
| dc.date.accessioned | 2021-06-13T03:22:35Z | - |
| dc.date.available | 2016-08-02 | |
| dc.date.copyright | 2011-08-02 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-29 | |
| dc.identifier.citation | Appeldoorn, M. M., Vincken, J. P., Aura, A. M., Hollman, P. C., & Gruppen, H. (2009). Procyanidin dimers are metabolized by human microbiota with 2-(3,4-dihydroxyphenyl) acetic acid and 5-(3,4-dihydroxyphenyl)-gamma- valerolactone as the major metabolites. J Agric Food Chem, 57(3), 1084-1092.
Aura, A.-M., Mattila, I., Seppanen-Laakso, T., Miettinen, J., Oksman-Caldentey, K.-M., & Oresic, M. (2008). Microbial metabolism of catechin stereoisomers by human faecal microbiota: Comparison of targeted analysis and a non-targeted metabolomics method. Phytochemistry Letters, 1(1), 18-22. Bagchi, D., Bagchi, M., Stohs, S. J., Das, D. K., Ray, S. D., Kuszynski, C. A., Joshi, S. S., & Pruess, H. G. (2000). Free radicals and grape seed proanthocyanidin extract: importance in human health and disease prevention. Toxicology, 148(2-3), 187-197. Bagchi, D., Ray, S. D., Bagchi, M., Preuss, H. G., & Stohs, S. J. (2002). Mechanistic pathways of antioxidant cytoprotection by a novel IH636 grape seed proanthocyanidin extract. Indian J Exp Biol, 40(6), 717-726. Boulton, D. W., Walle, U. K., & Walle, T. (1998). Extensive binding of the bioflavonoid quercetin to human plasma proteins. J Pharm Pharmacol, 50(2), 243-249. Chen, L., Lee, M. J., Li, H., & Yang, C. S. (1997). Absorption, distribution, elimination of tea polyphenols in rats. Drug Metab Dispos, 25(9), 1045-1050. Cheng, F. C., Ho, Y. F., Hung, L. C., Chen, C. F., & Tsai, T. H. (2002). Determination and pharmacokinetic profile of omeprazole in rat blood, brain and bile by microdialysis and high-performance liquid chromatography. J Chromatogr A, 949(1-2), 35-42. Das, N. P. (1971). Studies on flavonoid metabolism ; Absorption and metabolism of (+)-catechin in man. Biochem Pharmacol, 20, 3435-3445. de Boer, V. C. J., Dihal, A. A., van der Woude, H., Arts, I. C. W., Wolffram, S., Alink, G. M., Rietjens, I. M. C. M., Keijer, J., & Hollman, P. C. H. (2005). Tissue Distribution of Quercetin in Rats and Pigs. J. Nutr., 135(7), 1718-1725. De Bruyne, T., Pieters, L., Witvrouw, M., De Clercq, E., Vanden Berghe, D., & Vlietinck, A. J. (1999). Biological evaluation of proanthocyanidin dimers and related polyphenols. J Nat Prod, 62(7), 954-958. Deprez, S., Mila, I., Huneau, J. F., Tome, D., & Scalbert, A. (2001). Transport of proanthocyanidin dimer, trimer, and polymer across monolayers of human intestinal epithelial Caco-2 cells. Antioxid Redox Signal, 3(6), 957-967. Donovan, J. L., Crespy, V., Oliveira, M., Cooper, K. A., Gibson, B. B., & Williamson, G. (2006). (+)-Catechin is more bioavailable than (-)-catechin: relevance to the bioavailability of catechin from cocoa. Free Radic Res, 40(10), 1029-1034. Donovan, J. L., Manach, C., Rios, L., Morand, C., Scalbert, A., & Remesy, C. (2002). Procyanidins are not bioavailable in rats fed a single meal containing a grapeseed extract or the procyanidin dimer B3. Br J Nutr, 87(4), 299-306. Fine, A. M. (2000). Oligomeric proanthocyanidin complexes: history, structure, and phytopharmaceutical applications. Altern Med Rev, 5(2), 144-151. Foo, L. Y., Lu, Y., Howell, A. B., & Vorsa, N. (2000). A-Type proanthocyanidin trimers from cranberry that inhibit adherence of uropathogenic P-fimbriated Escherichia coli. J Nat Prod, 63(9), 1225-1228. Foo, L. Y., Lu, Y., Howell, A. B., & Vorsa, N. (2000). A-Type Proanthocyanidin Trimers from Cranberry that Inhibit Adherence of Uropathogenic P-Fimbriated Escherichia coli. Journal of Natural Products, 63(9), 1225-1228. Harada, M., Kan, Y., Naoki, H., Fukui, Y., Kageyama, N., Nakai, M., Miki, W., & Kiso, Y. (1999). Identification of the major antioxidative metabolites in biological fluids of the rat with ingested (+)-catechin and (-)-epicatechin. Biosci Biotechnol Biochem, 63(6), 973-977. Hatano, T., Miyatake, H., Natsume, M., Osakabe, N., Takizawa, T., Ito, H., & Yoshida, T. (2002). Proanthocyanidin glycosides and related polyphenols from cacao liquor and their antioxidant effects. Phytochemistry, 59(7), 749-758. Ho, K. Y., Huang, J. S., Tsai, C. C., Lin, T. C., Hsu, Y. F., & Lin, C. C. (1999). Antioxidant activity of tannin components from Vaccinium vitis-idaea L. J Pharm Pharmacol, 51(9), 1075-1078. Ho, S. C., Hwang, L. S., Shen, Y. J., & Lin, C. C. (2007). Suppressive effect of a proanthocyanidin-rich extract from longan (Dimocarpus longan Lour.) flowers on nitric oxide production in LPS-stimulated macrophage cells. J Agric Food Chem, 55(26), 10664-10670. Holt, R. R., Lazarus, S. A., Sullards, M. C., Zhu, Q. Y., Schramm, D. D., Hammerstone, J. F., Fraga, C. G., Schmitz, H. H., & Keen, C. L. (2002). Procyanidin dimer B2 [epicatechin-(4beta-8)-epicatechin] in human plasma after the consumption of a flavanol-rich cocoa. Am J Clin Nutr, 76(4), 798-804. Hong, J., Lu, H., Meng, X., Ryu, J. H., Hara, Y., & Yang, C. S. (2002). Stability, cellular uptake, biotransformation, and efflux of tea polyphenol (-)-epigallocatechin-3-gallate in HT-29 human colon adenocarcinoma cells. Cancer Res, 62(24), 7241-7246. Howell, A., Leahy, M., Kurowska, E., & Guthrie, N. (2001). In vivo evidence that cranberry proanthocyanidins inhibit adherence of P-fimbriated E. coli bacteria to uroepithelial cells. FASEB J, 15, A284. Howell, A. B., Vorsa, N., Der Marderosian, A., & Foo, L. Y. (1998). Inhibition of the adherence of P-fimbriated Escherichia coli to uroepithelial-cell surfaces by proanthocyanidin extracts from cranberries. N Engl J Med, 339(15), 1085-1086. Hsieh, M. C., Shen, Y. J., Kuo, Y. H., & Hwang, L. S. (2008). Antioxidative activity and active components of longan (Dimocarpus longan Lour.) flower extracts. J Agric Food Chem, 56(16), 7010-7016. Hylemon, P. B., Zhou, H., Pandak, W. M., Ren, S., Gil, G., & Dent, P. (2009). Bile acids as regulatory molecules. Journal of Lipid Research, 50(8), 1509-1520. Kay, C. D. (2006). Aspects of anthocyanin absorption, metabolism and pharmacokinetics in humans. Nutrition Research Reviews, 19(1), 137-146. Lai, R.-H., Miller, M. J., & Jeffery, E. (2010). Glucoraphanin hydrolysis by microbiota in the rat cecum results in sulforaphane absorption. Food & Function, 1(2), 161-166. Lambert, J. D., & Yang, C. S. (2003). Cancer chemopreventive activity and bioavailability of tea and tea polyphenols. Mutat Res, 523-524, 201-208. Laperra J, Michaud J, Masquelier J. (1977). Etude pharmacocinetique des oligomeres flavanoliques. Plant Med. Phytoter, 11, 133-142. Lavigne, J., Bourg, G., Combescure, C., Botto, H., & Sotto, A. (2008). In-vitro and in-vivo evidence of dose-dependent decrease of uropathogenic Escherichia coli virulence after consumption of commercial Vaccinium macrocarpon (cranberry) capsules. Clin Microbiol Infect, 14, 350 - 355. Li, C., & Xie, B. (2000). Evaluation of the antioxidant and pro-oxidant effects of tea catechin oxypolymers. J Agric Food Chem, 48(12), 6362-6366. Lin, J., & Tsai, C. (1995). Phenolic constituents from the flowers of Euphoria longana Lam. Chin Pharm J., 47, 113-121. Lin, J. H., Chiba, M., & Baillie, T. A. (1999). Is the role of the small intestine in first-pass metabolism overemphasized? Pharmacol Rev, 51(2), 135-158. Lu, W.-C., Huang, W.-T., Kumaran, A., Ho, C.-T., & Hwang, L. S. (2011). Transformation of proanthocyanidin A2 to its isomers under different physiological pH conditions and common cell culture medium. Journal of Agricultural and Food Chemistry, 59(11), 6214-6220. Maatta-Riihinen, K. R., Kahkonen, M. P., Torronen, A. R., & Heinonen, I. M. (2005). Catechins and procyanidins in berries of vaccinium species and their antioxidant activity. J Agric Food Chem, 53(22), 8485-8491. Maffei Facino R, Carini M, Aldini G, Bombardelli E, Morazzoni P, Morelli R. (1994). Free radicals scavenging action and anti-enzyme activities of procyanidines from Vitis vinifera. A mechanism for their capillary protective action. Arzneimittelforschung, 44(5), 592-601. Maldonado, P. D., Rivero-Cruz, I., Mata, R., & Pedraza-Chaverri, J. (2005). Antioxidant activity of A-type proanthocyanidins from Geranium niveum (Geraniaceae). J Agric Food Chem, 53(6), 1996-2001. Manach, C., Williamson, G., Morand, C., Scalbert, A., & Remesy, C. (2005). Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr, 81(1 Suppl), 230S-242S. Moini, H., Guo, Q., & Packe, L. (2002). Xanthine oxidase and xanthine dehydrogenase inhibition by the procyanidin-rich French maritime pine bark extract, pycnogenol: a protein binding effect. Adv Exp Med Biol, 505, 141-149. Nakamura, Y., & Tonogai, Y. (2003). Metabolism of grape seed polyphenol in the rat. J Agric Food Chem, 51(24), 7215-7225. Nardini, M., Natella, F., Scaccini, C., & Ghiselli, A. (2006). Phenolic acids from beer are absorbed and extensively metabolized in humans. J Nutr Biochem, 17(1), 14-22. Natsume, M., Osakabe, N., Yasuda, A., Baba, S., Tokunaga, T., Kondo, K., Osawa, T., & Terao, J. (2004). In vitro antioxidative activity of (-)-epicatechin glucuronide metabolites present in human and rat plasma. Free Radic Res, 38(12), 1341-1348. Nurmi, T., Mursu, J., Heinonen, M., Nurmi, A., Hiltunen, R., & Voutilainen, S. (2009). Metabolism of Berry Anthocyanins to Phenolic Acids in Humans. Journal of Agricultural and Food Chemistry, 57(6), 2274-2281. Okushio, K., Suzuki, M., Matsumoto, N., Nanjo, F., & Hara, Y. (1999). Identification of (-)-epicatechin metabolites and their metabolic fate in the rat. Drug Metab Dispos, 27(2), 309-316. Osakabe, N., Yasuda, A., Natsume, M., Takizawa, T., Terao, J., & Kondo, K. (2002). Catechins and their oligomers linked by C4 --> C8 bonds are major cacao polyphenols and protect low-density lipoprotein from oxidation in vitro. Exp Biol Med (Maywood), 227(1), 51-56. Petzinger, E., & Geyer, J. (2006). Drug transporters in pharmacokinetics. Naunyn-Schmiedeberg's Archives of Pharmacology, 372(6), 465-475. Ramiro-Puig, E., Urpi-Sarda, M., Perez-Cano, F. J., Franch, A., Castellote, C., Andres-Lacueva, C., Izquierdo-Pulido, M., & Castell, M. (2007). Cocoa-enriched diet enhances antioxidant enzyme activity and modulates lymphocyte composition in thymus from young rats. J Agric Food Chem, 55(16), 6431-6438. Ray, S. D., Kumar, M. A., & Bagchi, D. (1999). A novel proanthocyanidin IH636 grape seed extract increases in vivo Bcl-XL expression and prevents acetaminophen-induced programmed and unprogrammed cell death in mouse liver. Arch Biochem Biophys, 369(1), 42-58. Richelle, M., Tavazzi, I., Enslen, M., & Offord, E. A. (1999). Plasma kinetics in man of epicatechin from black chocolate. Eur J Clin Nutr, 53(1), 22-26. Rios, L. Y., Bennett, R. N., Lazarus, S. A., Remesy, C., Scalbert, A., & Williamson, G. (2002). Cocoa procyanidins are stable during gastric transit in humans. Am J Clin Nutr, 76(5), 1106-1110. Sang, S., Lee, M. J., Hou, Z., Ho, C. T., & Yang, C. S. (2005). Stability of tea polyphenol (-)-epigallocatechin-3-gallate and formation of dimers and epimers under common experimental conditions. J Agric Food Chem, 53(24), 9478-9484. Sano, A., Yamakoshi, J., Tokutake, S., Tobe, K., Kubota, Y., & Kikuchi, M. (2003). Procyanidin B1 is detected in human serum after intake of proanthocyanidin-rich grape seed extract. Biosci Biotechnol Biochem, 67(5), 1140-1143. Scalbert, A., Morand, C., Manach, C., & Remesy, C. (2002). Absorption and metabolism of polyphenols in the gut and impact on health. Biomedecine & Pharmacotherapy, 56(6), 276-282. Scheline, R. (1991). Handbook of mammalian metabolism of plant compounds. Boca Raton, FL: CRC Press. Schneider, H., & Blaut, M. (2000). Anaerobic degradation of flavonoids by Eubacterium ramulus. Arch Microbiol, 173(1), 71-75. Sen, C. K., & Bagchi, D. (2001). Regulation of inducible adhesion molecule expression in human endothelial cells by grape seed proanthocyanidin extract. Mol Cell Biochem, 216(1-2), 1-7. Shahat, A. A., Cos, P., De Bruyne, T., Apers, S., Hammouda, F. M., Ismail, S. I., Azzam, S., Claeys, M., Goovaerts, E., Pieters, L., Vanden Berghe, D., & Vlietinck, A. J. (2002). Antiviral and antioxidant activity of flavonoids and proanthocyanidins from crataegus sinaica. Planta Med, 68(06), 539,541. Shargel, L. W.-P., Susanna Yu, Andrew B. C. (2004). Chapter 15. Bioavailability and bioequivalence. Applied Biopharmaceutics and Pharmacokinetics. McGraw-Hill Professional Publishing, New York, NY, USA. Shargel, L. W.-P., Susanna; Yu, Andrew B. C. (2004). Chapter 1. Introduction to biopharmaceutics and pharmacokinetics. Applied Biopharmaceutics and Pharmacokinetics. McGraw-Hill Professional Publishing, New York, NY, USA. Shoji, T., Masumoto, S., Moriichi, N., Akiyama, H., Kanda, T., Ohtake, Y., & Goda, Y. (2006). Apple procyanidin oligomers absorption in rats after oral administration: analysis of procyanidins in plasma using the porter method and high-performance liquid chromatography/tandem mass spectrometry. J Agric Food Chem, 54(3), 884-892. Spencer, J. P., Chaudry, F., Pannala, A. S., Srai, S. K., Debnam, E., & Rice-Evans, C. (2000). Decomposition of cocoa procyanidins in the gastric milieu. Biochem Biophys Res Commun, 272(1), 236-241. Spencer, J. P., Schroeter, H., Rechner, A. R., & Rice-Evans, C. (2001). Bioavailability of flavan-3-ols and procyanidins: gastrointestinal tract influences and their relevance to bioactive forms in vivo. Antioxid Redox Signal, 3(6), 1023-1039. Stoupi, S., Williamson, G., Drynan, J. W., Barron, D., & Clifford, M. N. (2010a). A comparison of the in vitro biotransformation of (–)-epicatechin and procyanidin B2 by human faecal microbiota. Molecular Nutrition & Food Research, 54(6), 747-759. Stoupi, S., Williamson, G., Drynan, J. W., Barron, D., & Clifford, M. N. (2010b). Procyanidin B2 catabolism by human fecal microflora: Partial characterization of `dimeric' intermediates. Archives of Biochemistry and Biophysics, 501(1), 73-78. Takano, F., Takata, T., Yoshihara, A., Nakamura, Y., Arima, Y., & Ohta, T. (2007). Aqueous Extract of Peanut Skin and Its Main Constituent Procyanidin A1 Suppress Serum IgE and IgG1 Levels in Mice-Immunized with Ovalbumin. Biological & Pharmaceutical Bulletin, 30(5), 922-927. Turner, A., Chen, S., Joike, M., Pendland, S., Pauli, G., & Famsworth, N. (2005). Inhibition of uropathogenic Escherichia coli by cranberry juice: A new antiadherence assay. J Agric Food Chem, 53, 8940 - 8947. Umeda-Sawada, R., Ogawa, M., & Igarashi, O. (1999). The metabolism and distribution of sesame lignans (sesamin and episesamin) in rats. Lipids, 34(6), 633-637. Unno, T., Tamemoto, K., Yayabe, F., & Kakuda, T. (2003). Urinary excretion of 5-(3',4'-dihydroxyphenyl)-gamma-valerolactone, a ring-fission metabolite of (-)-epicatechin, in rats and its in vitro antioxidant activity. J Agric Food Chem, 51(23), 6893-6898. van't Slot, G., & Humpf, H. U. (2009). Degradation and metabolism of catechin, epigallocatechin-3-gallate (EGCG), and related compounds by the intestinal microbiota in the pig cecum model. J Agric Food Chem, 57(17), 8041-8048. Walle, T. (2004). Absorption and metabolism of flavonoids. Free Radical Biology and Medicine, 36(7), 829-837. Winter, J., Moore, L. H., Dowell, V. R., Jr., & Bokkenheuser, V. D. (1989). C-ring cleavage of flavonoids by human intestinal bacteria. Appl Environ Microbiol, 55(5), 1203-1208. Wong, J. M. W., de Souza, R., Kendall, C. W. C., Emam, A., & Jenkins, D. J. A. (2006). Colonic health: Fermentation and short chain fatty acids. Journal of Clinical Gastroenterology, 40(3), 235-243. Wong, K. (2000). Longan production in Asia. Food and agriculture organization of the united nations. Bangkok, Thailand. Wu, Z. Y., Raven, P. H., & Hong, D. Y. (2007). Hippocastanaceae through Theaceae. Flora of China. Science Press, Beijing., 12, 5-24. Yang, D. J., Chang, Y. Y., Hsu, C. L., Liu, C. W., Lin, Y. L., Lin, Y. H., Liu, K. C., & Chen, Y. C. (2010). Antiobesity and hypolipidemic effects of polyphenol-rich longan (Dimocarpus longans Lour.) flower water extract in hypercaloric-dietary rats. J Agric Food Chem, 58(3), 2020-2027. Zhu, Q. Y., Hammerstone, J. F., Lazarus, S. A., Schmitz, H. H., & Keen, C. L. (2003). Stabilizing effect of ascorbic acid on flavan-3-ols and dimeric procyanidins from cocoa. J Agric Food Chem, 51(3), 828-833. 江怡君。2010。龍眼花 proanthocyanidin A2 萃出物與純物質 Proanthocyanidin A2 在大鼠體內抗氧化活性之探討。國立台灣大學食品科技研究所碩士論文。臺北。台灣。 李沐勳和李威。2001。常用中草藥手冊。國立中國醫藥研究所,132。 沈宜蓁。2005。龍眼花萃取物抗氧化性之探討。國立台灣大學食品科技研究所碩士論文。臺北。台灣。 張景煇。1996。龍眼,龍眼乾,龍眼花及龍眼蜜中重要香味成份判定之研究。大葉工學院食品工程研究所碩士論文。彰化。台灣。 許鴻齡和李立聰。1977。龍眼花化學成分研究。化學, 4, 103-105。 黃秀梅。2002。利用微透析技術探討秋水仙素在大白鼠藥物動力學的研究。國立陽明大學藥理學研究所碩士論文。台北。台灣。 詹國靖。2009。以大鼠模式探討芝麻 lignan 化合物的生物可利用性。國立台灣大學食品科技研究所博士論文。台北。台灣。 劉正雄。2002。應用生物藥劑學與藥物動力學。合記圖書出版社。台北。台灣。 蔡東湖。2003。大白鼠的基本手術技術與微透析應用。國立陽明大學 藥物動力學部份上課教材。台北。台灣。 謝孟潔。2006。龍眼花抗氧化成分之研究。國立台灣大學食品科技研究所碩士論文。臺北。台灣。 謝欣玲。2005。芝麻酚在大白鼠之口服生物可利用率。國立台灣大學食品科技研究所碩士論文。臺北。台灣。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31863 | - |
| dc.description.abstract | 龍眼 (Dimocarpus longan) 屬於無患子科,龍眼屬植物,廣泛生長於臺灣、中國及東南亞等地區,在民間藥學上用以治療白帶、腎臟病等。本研究室先前研究指出龍眼花水萃物具有良好之體外抗 LDL 氧化活性,其主要活性成分為 (-)-epicatechin 及 proanthocyanidin A2 (PA2)。然而,目前 A-type 原花青素於生物體內生物可利用率之研究仍相當缺乏,故本研究之目的係以大鼠模式評估 PA2 之生物可利用率。以胃管餵食大鼠 200 mg/kg BW PA2 後,以斷尾採血方式收集血液,經 HPLC 分析後在血液中無法測得 PA2;以股靜脈注射給予大鼠 30 mg/kg BW PA2,測得 Cmax 為 24.60 ± 1.5 μg/mL,T1/2 為 8.46 ± 0.8 min;經計算後得 PA2 之口服生物可利用率為 0。當進行組織分佈探討時,各臟器中皆無法測得 PA2,其大多存在於腸胃道中,並隨著時間排出體外,胃管餵食後 8-12 hr 為 PA2 最大排除期,24小時後約 63% 自糞便排出體外。由體外腸道微生物發酵試驗結果可知 5-(3,4-dihydroxyphenyl)-γ-valerolactone 及3-hydroxyphenylpropionic acid (3-HPP) 為 PA2 之主要代謝產物,而在管餵大鼠 200mg/kg BW PA2 之腸道及尿液中亦可測得此代謝物。盲腸結紮試驗中測得 21 種腸道微生物代謝產物,其中以3-HPP、3,4-Dihydroxyphenylpropionic acid 及hippuric acid 為主。綜合以上試驗結果可知 PA2 在血液及組織中的濃度很低,但可藉由腸道微生物作用代謝成多種小分子的酚類化合物,此類代謝產物與 PA2 生理活性之相關性需進一步加以探討以了解 PA2 生理活性之作用機制。 | zh_TW |
| dc.description.abstract | Dimocarpus longan Lour., known as longan (dragon eye) in the Orient, belongs to the Sapindaceae family. Longan is a subtropical fruit widely grown in Taiwan, China and Southeast Asia. In traditional Chinese medicine the flowers are used for the treatment of leucorrhea and kidney disorders. The water extract of longan flower was found to possess high antioxidative activity against LDL oxidation in vitro. The major antioxidative compounds against LDL oxidation in longan flower were identified to be (-)-epicatechin and proanthocyanidin A2 (PA2). Intervention studies with procyanidin-rich extracts such as cocoa and wine suggest protective effects of proanthocyanidin against cardiovascular diseases. However, the bioavailiabily study of A-type proanthocyanidins is quite limited. The aim of this study was to evaluate the bioavailiabilty of PA2 following oral administration by Sprague-Dawley rats. After tube-feeding 250 mg/kg BW of PA2 for 2 hr, PA2 could not be detected in plasma. The pharmacokinetic parameter Cmax and T1/2 were 24.60±1.5 μg/mL and 8.46±0.8 min respectively after i.v. injection of 30 mg/kg BW PA2. The bioavailability of PA2 was almost 0. After tube-feeding 200 mg/kg BW of PA2 for 24 hr, 63% PA2 were excreted to feces. We used in vitro fermentation of PA2 with rat microbiota to examine the metabolites of PA2. The main metabolites of PA2 were 5-(3, 4-dihydroxyphenyl)-γ- valerolactone and 3-(3'-hydroxyphenyl) propionic acid (3-HPP). These metabolites of PA2 were also found in urine and intestine of rats tube-fed with 200 mg/kg BW PA2 indicating the possibility of absorption of PA2 after oral administration. After introducting PA2 (100 mg/kg BW) directly into the cecum for 6 hr, PA2 was found to be degraded into 21 phenolic acid compounds. The major metabolites were found to be 3-HPP, 3, 4-dihydroxyphenylpropionic acid and hippuric acid. Our results showed that intestinal microbiota could convert PA2 to a number of smaller phenolic compounds. The health potential of these metabolites should be further studied in order to understand the effect of PA2, since the PA2 concentrations in plasma and other tissues are very low. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T03:22:35Z (GMT). No. of bitstreams: 1 ntu-100-D95641004-1.pdf: 6016563 bytes, checksum: 3068f72b22f39ad6f0baa5f37846d196 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II 縮寫表 IV 目錄 VI 圖次 XI 表次 XV 附錄 XVI 壹、 前言 1 貳、 文獻整理 2 一、 龍眼花 2 (一) 龍眼簡介 2 (二) 龍眼花成分與功效 2 二、 原花青素及其生理活性 7 (一) 原花青素簡介 7 (二) 生理功效 9 三、 藥物動力學 15 (一) 吸收 (absorption) 17 1. 細胞膜的性質 17 2. 藥物在腸胃道的吸收 17 (二) 分佈 (distribution) 18 (三) 代謝 (metabolism) 18 四、 生物可利用率 24 (一) 生物可利用率定義 24 1. 絕對生物可利用率 24 2. 相對生物可利用率 24 (二) 原花性素的生物可利用率 24 (三) 酚類化合物之吸收、分佈及排除的研究 26 五、 酚類化合物於腸內菌群之代謝 31 (一) 腸道微生物對原花青素之代謝 31 (二) 腸道微生物對其他酚類物質之代謝 35 參、 研究目的與實驗架構 38 一、 研究目的 38 二、 實驗架構 39 (一) 大鼠藥物動力學試驗 40 (二) 大鼠體內分佈及排除試驗 41 (三) 模擬體內代謝試驗 42 肆、 材料與方法 44 一、 實驗材料 44 (一) 龍眼花 44 (二) Proanthocyanidin A2 44 二、 化學藥品與溶劑 44 三、 儀器設備 45 四、 實驗動物及動物飼料 47 五、 實驗方法 48 (一) Proanthocyanidin A2 之分離純化 48 1. 龍眼花 80% 丙酮萃取物之製備 48 2. 龍眼花 80% 丙酮萃取物之溶劑區分製備 48 3. Sephadex LH-20 管柱層析 50 4. MCI gel 管柱層析 51 5. 再結晶製備 proanthocyanidin A2 52 6. Proanthocyanidin A2 高效能液相層析 52 (二) Proanthocyanidin A2 藥物動力學參數測定 53 1. 動物飼養 53 2. Proanthocyanidin A2 血漿回收率測定 54 3. Proanthocyanidin A2 於血漿樣品之檢量線製作 54 4. 管灌餵食組 55 5. 靜脈注射組 55 6. Proanthocyanidin A2 於大白鼠的生物可利用率測定 56 7. 藥動參數分析 56 8. Proanthocyanidin A2 在血漿中之蛋白質結合率 57 (三) Proanthocyanidin A2 於大白鼠的吸收分佈及排除 57 1. 實驗動物飼養 57 2. 吸收與分佈試驗 58 3. 檢體萃取 58 4. 排除試驗 60 5. 高效液相層析分析條件 62 (四) Proanthocyanidin A2 之胃腸道模擬系統穩定性試驗 63 1. Proanthocyanidin A2 於模擬胃液中降解之研究 63 2. Proanthocyanidin A2 於模擬腸液中降解之研究 63 (五) Proanthocyanidin A2之腸內菌群代謝產物研究 63 1. Proanthocyanidin A2 與大鼠盲腸微生物共發酵試驗 63 2. 高效液相層析分析條件 64 (六) Proanthocyanidin A2 及其代謝產物之液相層析串聯質譜儀 (LC/MS/MS) 分析 64 伍、 結果與討論 71 一、 Proanthocyanidin A2 萃取與製備 71 (一) 龍眼花 80% 丙酮萃取物 (LF-A) 71 (二) 龍眼花 80% 丙酮萃取物之溶劑區分萃取 71 (三) 龍眼花丙酮粗萃物乙酸乙酯區分層 (LF-A-EA) 之 Sephadex LH-20 管柱層析 72 (五) 再結晶方式製得 proanthocyanidin A2 77 (六) 純化合物之結構分析與鑑定 77 二、 Proanthocyanidin A2藥物動力學參數 81 (一) Proanthocyanidin A2 分析方法之確效 81 (二) Proanthocyanidin A2 藥物動力學參數 83 1. 傳統採血法之 proanthocyanidin A2 回收率測定 83 2. 血漿中 proanthocyanidin A2 之藥物動力學及口服生物可利用率 86 3. Proanthocyanidin A2 在血漿中之蛋白結合率 87 三、 Proanthocyanidin A2 於大白鼠的吸收分佈及排除 91 (一) PA2 於大鼠體內之吸收與分佈試驗 91 (二) PA2 於大鼠尿液及糞便之排除情形 103 四、 以體外模擬試驗探討proanthocyanidin A2 可能之代謝途徑 108 (一) Proanthocyanidin A2 之胃腸道模擬系統穩定性試驗 108 (二) Proanthocyanidin A2 之大白鼠腸內菌群代謝產物研究 117 五、 Proanthocyanidin A2 於大白鼠各組織之代謝物分析 126 陸、 結論 151 柒、 參考文獻 152 捌、 附錄 163 | |
| dc.language.iso | zh-TW | |
| dc.subject | 代謝物 | zh_TW |
| dc.subject | 原花青素 A2 | zh_TW |
| dc.subject | 生物可利用率 | zh_TW |
| dc.subject | proanthocyanidin A2 | en |
| dc.subject | metabolites | en |
| dc.subject | bioavailability | en |
| dc.title | 以大鼠模式探討龍眼花 proanthocyanidin A2
的生物可利用性 | zh_TW |
| dc.title | Study on the Bioavailability of Proanthocyanidin A2
from Longan (Dimocarpus longan Lour.) Flower in Rat | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 徐鳳麟,蕭明熙,顏國欽,陳炳輝,何其儻,呂廷璋 | |
| dc.subject.keyword | 原花青素 A2,生物可利用率,代謝物, | zh_TW |
| dc.subject.keyword | proanthocyanidin A2,bioavailability,metabolites, | en |
| dc.relation.page | 172 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-29 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 5.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
