Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31848
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張所鋐
dc.contributor.authorBo-Ren Wangen
dc.contributor.author王柏仁zh_TW
dc.date.accessioned2021-06-13T03:22:05Z-
dc.date.available2008-08-01
dc.date.copyright2006-08-01
dc.date.issued2006
dc.date.submitted2006-07-28
dc.identifier.citation[1] S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature, 354, 56 (1991)
[2] S. Iijima, and T. Ichihashi, “Single-Shell Carbon Nanotubes of 1-nm Diameter,” Nature (London), 363, 603 (1993)
[3] D.S. Bethune, C.H. Kiang, M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, “Cobalt-Catalysed Growth of Carbon Nanotubes with Single-Atomic-Layer Walls,” Nature (London), 363, 605 (1993)
[4] M.S. Dresselhaus, G. Dresselhaus, and P.C. Eklund, “Fullerenes and Carbon Nanotubes,” Academic, San Diego (1996)
[5] R. Saito, G. Dresselhaus, and M.S. Dresselhaus, “Physical Properties of Carbon Nanotubes,” Imperial College Press, London (1998)
[6] M.S. Dresselhaus, G. Dresselhaus, and Ph. Avouris (Eds.), “Carbon Nanotubes: Synthesis, Structure, Properties, and Applications,” Springer–Verlag, Berlin (2001)
[7] 謝志明,2005;“單壁奈米碳管彈力性質之分子動力學模擬”,國立臺灣大學應用力學硏究所碩士論文
[8] Min-Feng Yu, Oleg Lourie, Mark J. Dyer, Katerina Moloni, Thomas F. Kelly, and Rodney S. Ruoff, “Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load,” Science, 28, 287 (2000)
[9] J. Y. Huang, S. Chen, Z. Q. Wang, K. Kempa, Y. M. Wang, S. H. Jo, G. Chen, M. S. Dresselhaus , and Z. F. Ren, “Superplastic Carbon Nanotubes,” Nature, 439, 19(2006)
[10] Liu Yang , and Jie Han, “Electronic Structure of Deformed Carbon Nanotubes,” Phys. Rev. Lett., 85, 154 (2000)
[11] Chun-Yu Li, and Tsu-Wei Chou1, “Strain and Pressure Sensing Using Single-Walled Carbon Nanotubes,” Nanotechnology, 15, 1493-96 (2004)
[12] E. D. Minot, Yuval Yaish,Vera Sazonova, Ji-Yong Park, Markus Brink, and Paul L. McEuen, “Tuning Carbon Nanotube Band Gaps with Strain,” Phys. Rev. Lett., 90, 156401 (2003)
[13] Jien Cao, Qian Wang, and Hongjie Dai, “Electromechanical Properties of Metallic, Quasimetallic, and Semiconducting Carbon Nanotubes under Stretching,” Phys. Rev. Lett., 90, 157601 (2003)
[14] Prasad Dharap, Zhiling Li, Satish Nagarajaiah and E V Barrera, “Nanotube Film Based on Single-Wall Carbon Nanotubes for Strain Sensing,” Nanotechnology, 15, 379-382 (2004)
[15] Randal J. Grow, Qian Wang, Jien Cao, Dunwei Wang, and Hongjie Dai, “Piezoresistance of Carbon Nanotubes on Deformable Thin-Film Membranes,” Appl. Rev. Lett., 86, 093104 (2005)
[16] Kaiyou Qian, Ting Chen, Bingyong Yan, Yangkui Lin, Dong Xu, Zhuo Sun, and Bingchu Cai, “Studies on Vacuum Microelectronic Pressure Sensors Based on Carbon Nanotubes Arrays,” Physica E, 31, 1 (2006)
[17] C. Stampfer, T. Helbling, D. Obergfell, B. Scho1berle, M. K. Tripp, A. Jungen, S. Roth, V. M. Bright, and C. Hierold, “Fabrication of Single-Walled Carbon-Nanotube-Based Pressure Sensors,” Nano Lett., 6, 2, 233-237 (2006)
[18] 謝揚鵬,2003;“利用汽相催化劑成長奈米碳管與其電子場發射發光研究”,中原大學應用物理所碩士論文
[19] M. J. Yacaman, M. M. Yoshida, L. Rendon, and J. G. Santiesteban, “Catalytic Growth of Carbon Microtubules with Fullerene Structure,” Appl. Phys. Lett., 62, 202 (1993)
[20] V. Ivanov, J.B. Nagy, Ph. Lambin, A. Lucas, X.B. Zhang, X.F. Zhang, D. Bernaerts, G. Van Tendeloo, S. Amelinckx, and J. Van Landuyt, “The Study of Carbon Nanotubules Produced by Catalytic Method,” Chem. Phys. Lett., 223, 329 (1994)
[21] S. Amelinckx, X.B. Zhang, D. Bernaerts, Z.F. Zhang, V. Ivanov, and J.B. Nagy, “A Formation Mechanism for Catalytically Grown Helix Shaped Graphite Nanotubes,” Science, 265, 635 (1994)
[22] W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, and G. Wang, “Large-Scale Synthesis of Aligned Carbon Nanotubes,” Science, 274, 1701 (1996)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31848-
dc.description.abstract自從1991年發現奈米碳管後,相關研究得知奈米碳管受到應變時電性會改變,我們欲利用此項特性來設計、製作出可量測兩個方向應變的感測器。
經由有限元素軟體模擬來設計出二維方向的奈米碳管應變感測器,設計出尺寸為4mm* 4mm* 0.5mm,且每個感測器上可量測到八組訊號,我們可透過奈米機電製程技術和化學氣相沈積法來製作出所設計的二維奈米碳管應變感測器。
將二維奈米碳管應變感測器黏著於待測物上,當待測物產生應變時,感測器上的電訊號會有相對應的反應,我們記錄下應變和電訊號,計算後可以得知二維奈米碳管應變感測器的應變規因子最大為740左右,最小的應變解析度可達0.0000099。
zh_TW
dc.description.abstractSince carbon nanotubes were found in 1991, the researches related to carbon nanotubes have discovered that the electric property of carbon nanotubes would change when the carbon nanotubes subjected to strains. We want to use this special electric character to design and fabricate a strain sensor which can detect two dimension strains.
Through finite element software, we can simulate and design the two dimension carbon nanotubes strain gauge. The size of device is 4mm* 4mm* 0.5mm, and eight electric signals will be obtained in one device. Using Nano-Electric-Mechanical-systems technology and Chemical Vapor Deposition, we can fabricate the two dimension carbon nanotubes strain gauge.
The device is attached to the material, and the electric signals of the device will change when the material is subjected to strains. According the data of the electric signals and the strains from the experiments, we can get the maximum Gauge Factor is about 740 and the minimum resolution of strain can reach 0.0000099.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:22:05Z (GMT). No. of bitstreams: 1
ntu-95-R93522608-1.pdf: 5849756 bytes, checksum: d025d43650d18c601e64681b543c50a9 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents中文摘要 I
英文摘要 II
目錄 III
第1章 緒論 1
1.1 研究背景 1
1.2 應變敏感度(Strain Sensitivity) 2
1.2.1 電阻式應變規(Electric Resistance Strain Gauge) 4
1.3 文獻回顧 6
第2章 設計方向 12
2.1 微奈米機電製程技術考量 12
2.2 有限元素軟體模擬考量 14
2.3 設計優勢 27
第3章 實驗設備與製程 29
3.1 奈米機電製程技術 29
3.1.1 微影製程技術 29
3.1.2 蝕刻技術 33
3.2 製程流程 36
3.3 裝置製程 37
3.3.1 正面蝕刻 45
3.3.2 鍍電極 45
3.3.3 背面蝕刻 47
3.3.4 定義催化劑區域 48
3.4 化學氣相沉積法(Chemical Vapor Deposition, CVD) 50
第4章 實驗規劃與結果分析 53
4.1 量測電極訊號 53
4.2 黏著CHIP 55
4.3 實驗量測裝置 56
4.4 CHIP電訊號和懸臂樑應變關係 60
4.5 實驗結果 102
4.5.1 實驗一∼實驗五 102
4.5.2 實驗六∼實驗十二 104
4.5.3 實驗十三∼實驗十四 105
4.5.4 實驗十五∼實驗二十三 106
4.5.5 實驗二十四∼實驗四十一 109
第5章 結論與未來展望 111
參考文獻 112
dc.language.isozh-TW
dc.title二維奈米碳管應變感測器zh_TW
dc.titleTwo Dimension Carbon Nanotubes Strain Gaugeen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee施文彬,張家歐
dc.subject.keyword奈米碳管,應變規因子,zh_TW
dc.subject.keywordCarbon nanotubes,Gauge Factor,en
dc.relation.page114
dc.rights.note有償授權
dc.date.accepted2006-07-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  目前未授權公開取用
5.71 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved