Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
  • Help
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31765
Title: 基於多類別提昇的動作識別
Action Recognition Using Multi-class Boosting
Authors: Ying-Chung Chen
陳瀅中
Advisor: 洪一平(Yi-Ping Hung)
Co-Advisor: 劉庭祿(Tyng-Luh Liu)
Keyword: AdaBoost,錯誤稱正碼,動作,識別,體積特徵,
AdaBoost,Error-correct code,action,recognition,Volumetric feature,
Publication Year : 2006
Degree: 碩士
Abstract: 在這篇論文中,我們綜合了體積特徵(volumetric feature)還有空間與時間校正(spatio-temporal alignment)來處理動作識別這個問題。我們使用了適性背景混和模型(adaptive background mixture model)來將人體的部份從影片之中擷取出來,將他們正規化之後依據人體的重心把他們放在每張影格中央。接下來,我們使用了動態時間翹曲(Dynamic Time Warping)配合形狀內容(Shape Context)來作影片方面的時間校正。作完空間與時間校正之後,我們從這段包含著動作的影片中擷取體積特徵來描述表演者的動作。其中體積特徵是由二維空間中的物體偵測裡頭所使用的特徵得到靈感的。為了將二元分類法應用在多類別的問題上,我們在AdaBoost上使用了錯誤更正碼來達到多類別的目的。相對於直觀上每個類別學一個分類器的方法,我們在實驗中證明了這種多類別的學習正確率並不會低於前者。在實驗中我們也闡述這種空間與時間的校正相較於沒校正前,可以大幅提昇辨識率。
In this thesis we use volumetric feature combined with spatial and temporal alignment to deal with action recognition problem. We use the adaptive background mixture model to extract the human body out of the image sequence, normalize and align them in the center of the frame according to the centroid of figure. After that we use Dynamic Time Warping to achieve the temporal alignment, by using of a simplified version of Shape Context. Then we apply the volumetric feature inspired by 2D rectangle feature in object detection on static images. To solve the multi-class learning problem, we apply an multi-class approach of Adaboost by using error-correcting code, which is more effective than one-against-all approach. In the experiment, we demonstrate the using of spatial and temporal alignment can avoid the time-scale and space-scale issue thus improve the accuracy rate.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31765
Fulltext Rights: 有償授權
Appears in Collections:資訊網路與多媒體研究所

Files in This Item:
File SizeFormat 
ntu-95-1.pdf
  Restricted Access
593.43 kBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved