Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31442
標題: 氧化鎂基磁性穿隧接面之顯微結構與磁阻研究
Study of microstructures and magnetoresistance of MgO based magnetic tunnel junctions
作者: Chun-Yuan Chou
周群淵
指導教授: 郭博成
共同指導教授: 姚永德
關鍵字: 氧化鎂,磁性穿隧接面,顯微結構,磁阻,
MgO,magnetic tunnel junction,microstructure,magnetoresistance,
出版年 : 2006
學位: 博士
摘要: 本研究以直流與射頻磁控濺鍍的方式在矽基板上鍍製磁性穿隧接面,利用超高真空的濺鍍機,配合電子束微影及氬離子蝕刻來製作微米尺度的自旋依賴穿隧接面。本實驗所鍍製的磁性穿隧接面是使用準自旋閥的結構,主要是利用兩層鐵磁性薄膜頑磁力不同,當施加一外加磁場時,隨著磁場的變化,形成兩鐵磁性層磁化方向平行與反平行兩種狀態,並利用此兩種狀態來得到低電阻和高電阻的差異。我們將針對MgO 薄膜成長於不同的鐵磁性層時(Co、CoFe、CoFeB、CoFeC),探討其微結構和穿隧磁阻的變化,同時藉由改變工作壓力和熱處理溫度來探討MgO 薄膜微結構的改變。
經由穿透式電子顯微鏡的分析顯示,使用Co 或CoFe 底層將使MgO 薄膜形成奈米晶粒和非晶質混合的結構,且MgO 薄膜的成長不具特定結晶方向,呈現散亂的晶格排列方式。但是當MgO 薄膜成長於非晶質的CoFeB、CoFeC 或SiO2 底層時,MgO 薄膜在初鍍狀態即可具有(001)優選方向。從X 光繞射的分析顯示,當MgO 薄膜經過400 ℃、30 分鐘的熱處理後,其(001)織構未有顯著的提升,但有助於MgO 薄膜應力的釋放。
根據穿透式電子顯微鏡以及穿隧磁阻的研究結果顯示,當Os (2 nm)/CoFeB (6 nm)/MgO (2.5 nm)/CoFe (5 nm)/Ta (5 nm)樣品經過300 oC、30 分鐘的熱處理之後,可以得到約25 %的穿隧磁阻值且CoFeB薄膜會利用MgO 的表面形成MgO (001)[100]//CoFeB (001) [110]的磊晶關係。此外,由於CoFe 薄膜成長於MgO 表面時不具有特定的結晶方向,呈現散亂的晶格排列方式,當薄膜中局部區域有較多的MgO (001)//CoFe (001)磊晶關係存在時,將可得到較大的穿隧磁阻值(~90 %)。當我們於MgO 薄膜和CoFe 薄膜間引入CoFeB 中間層時,CoFeB/CoFe 上磁性層將於初鍍狀態形成(111)從優取向,此有助於提升初鍍薄膜的穿隧磁阻值,將會由Os (2 nm)/CoFeB (6 nm)/MgO (2.5 nm)/CoFe (5 nm)/Ta (5 nm)薄膜的1 %提高至Os (2 nm)/CoFeB (6 nm)/MgO (2.5 nm)/CoFeB (1.2 nm)/CoFe (3 nm)/Ta (5 nm)薄膜的12 %。但是當後者經過300 ℃、30 分鐘的熱處理後,仍可得到約25 %的穿隧磁阻值,即鐵磁性中間層的引入對於最佳穿隧磁阻值的提高並無顯著效果。此外,根據CoFeC/MgO/CoFe 磁性穿隧接面的研究結果顯示,當初鍍Os (2 nm)/CoFeC (6 nm)/MgO (2.5 nm)/CoFe (3 nm)/Ta(5 nm)樣品經過150 ℃的熱處理後,穿隧磁阻值可以由9 %提高至12 %,但是隨著熱處理溫度繼續提高,穿隧磁阻值和RA 值則逐漸降低。根據電流-電壓曲線的量測結果顯示Os/CoFeC/MgO/CoFe/Ta 樣品的絕緣層特性在經過350 ℃、30 分鐘熱處理後已被明顯的破壞。
Magnetic tunnel junctions are deposited on Si substrate by dc and rf magnetron sputtering in an ultra-high vacuum chamber. The micro-sized spin-dependent tunnel junction is patterned by e-beam lithography and ion-milling. The pseudo-spin valve magnetic tunnel junction is fabricated in this work. Due to the difference in the coercivity between two ferromagnetic layers, the parallel and antiparallel spin states of the two ferromagnetic layers can be obtained as the magnetic field is varied. The effects of underlayer materials, working pressure and annealing temperatures on the microstructure and magnetoresistance of the MgO film are investigated.
TEM analysis shows that the as-deposited MgO film with Co or CoFe underlayer has nanocrystalline structure or mixing phases of nanocrystalline and amorphous. Besides, the MgO grains are random-oriented. The as-deposited MgO thin film with (001) preferred orientation is obtained as the MgO film is deposited on CoFeB、CoFeC or SiO2 underlayer. X-ray diffraction analysis shows that the (001) preferred orientation of the MgO thin film does not enhance significantly after post-annealing at 400 ℃ for 30 minutes. However, that is beneficial for relaxing the stress in the MgO thin film.
Magnetoresistance measurements indicate that the tunneling magnetoresistance ratio of about 25 % is obtained by annealing the Os (2 nm)/CoFeB (5 nm)/MgO (2.5 nm)/CoFe (5 nm)/Ta (5 nm) thin film at 300 ℃ for 30 minutes. The MgO (001)[100]//CoFeB (001) [110] orientation relationship can be obtained according to the TEM analysis. Because the CoFe grains are random-oriented as it is deposited on the MgO layer, the larger tunneling magnetoresistance ratio of about 90 % can be obtained for the magnetic tunnel junction with better epitaxial growth of (001) CoFe grains on (001) MgO grains. The as-deposited CoFe thin film with (111) preferred orientation can be obtained by inserting the CoFeB thin layer between the MgO and CoFe thin layers. Therefore, the tunnel magnetoresistance ratio for the as-deposited magnetic tunnel junction is increased from 1 % for the Os (2 nm)/CoFeB (6 nm)/MgO (2.5 nm)/CoFe (5 nm)/Ta (5 nm) thin film to 12 % for the Os (2 nm)/CoFeB (6 nm)/MgO (2.5 nm)/CoFeB (1.2 nm)/CoFe (3 nm)/Ta (5 nm). It is observed that the insertion of the ferromagnetic spacer does not improve the magnetoresistance ratio after 300 ℃ annealing. The tunnel magnetoresistance ratio for the Os (2 nm)/CoFeB (6 nm)/MgO (2.5 nm)/CoFeB (1.2 nm)/CoFe (5 nm)/Ta (5 nm) thin film is about 25 % after annealing at 300 ℃ for 30 minutes. The tunnel magnetoresistance for the as-deposited Os (2 nm)/CoFeC (6 nm)/MgO (2.5 nm)/CoFe (3 nm)/Ta (5 nm) thin film is increased from 9 % to 12 % after annealing at 150 ℃. However, the tunnel magnetoresistance and the resistance-area product are decreased as the annealing temperature is increased above 150 ℃. From the I-V curve measurement of the Os/CoFeC/MgO/CoFe/Ta thin film, it can be see that the barrier properties is deteriorated after annealing at 350 ℃ for 30 minutes.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31442
全文授權: 有償授權
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  目前未授權公開取用
18.79 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved