Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30812
Title: 利用動態估測預測物體位置並應用於以色彩為基礎的前景物體偵測
Object Location Prediction Based on Motion Estimation with Application on Color-Based Foreground Object Detection
Authors: Ching-Chun Chiang
江敬群
Advisor: 連豊力(Feng-Li Lian)
Keyword: 前景偵測,物體位置預測,影像處理,影像分析,
foreground detection,object location prediction,image processing,image analysis,
Publication Year : 2007
Degree: 碩士
Abstract: 在很多電腦視覺以及機器視覺的應用當中,一些前景偵測的方法經常被使用來做為前置處理。影像之中有許多的特性被用來作為分辨前景以及背景的依據,其中物體的動態資訊可以有效的分辨出移動中的物體。
雖然動態資訊非常的有效,但是取得整張影像的動態資訊需要非常大的計算量。在過去,只有一些快速的演算法用應用在動態估測的處理上面來增加估測的速度。事實上,並非整張影像裡面的所有動態都非常重要,只有前景物體的動態才真正是被前景偵測系統所需要,而背景的動態則並非必要的,這意味著動態估測的處理不需要實行在背景的區域。
這個研究提出了一個在影片中預測前景物體位置的方法。這個方法同時使用了動態以及交通密度來預測前景物體在影像中的位置。其中物體的動態可由動態估測獲得而交通密度則可以由過去的判斷結果得到。
一個前景偵測的程式被設計來驗證這個預測方法。對於移動以及大小改變的物體的預測能力將藉由一些特殊的影片來解釋。最後,使用使用預測方法的優勢將藉由三個不同的輸入影片加以說明。
Many computer vision and machine vision applications employ some foreground detection methods as the first stage for detecting object location. Many characteristics of image data have been used to segment images into background and foreground elements. Motion is effective information for detecting moving objects in two continuous images.
Although motion is helpful to detect foreground objects, it requires a heavy computational load when detecting all motions of an image. In previous applications, some fast search algorithms are proposed to reduce the computational load of motion estimation. In fact, not all motions are important in an image. Only the foreground object motion is required in a foreground detection system. The background motion is not necessary for detecting foreground, and it means that the motion estimation process has no need to be applied in the background area.
In this research, a method is proposed for predicting foreground object location in a video. The method uses both motion and traffic density to predict object location in an input image. Motion is obtained by motion estimation, and traffic density is obtained by the analysis of historical detection results.
A program of foreground detection is designed to verify the prediction method. The prediction capabilities with moving and size-changing object are explained by the experiments with some special videos. Finally, the advantages of using the prediction method are illustrated through the experiment with three different input videos.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30812
Fulltext Rights: 有償授權
Appears in Collections:電機工程學系

Files in This Item:
File SizeFormat 
ntu-96-1.pdf
  Restricted Access
1.29 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved