Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30653| Title: | 有限群的必要維度 Essential Dimension of Finite Groups |
| Authors: | Chih-Chieh Chen 陳志傑 |
| Advisor: | 康明昌(Ming-Chang Kang) |
| Keyword: | 有限群,必要維度, finite groups,essential dimension,affine group scheme,Galois cohomology, |
| Publication Year : | 2007 |
| Degree: | 碩士 |
| Abstract: | 在九零年代初期 J.Bulher and Z.Reichstein 開始考慮有限群的「必要維度」,不久之後進而考慮代數群的必要維度。 大約在十年之前人們了解到所謂的必要維度是可以用上同調代數的方法定義的, Berhuy and Favi 的論文 [BF] 就是整理 Merkurjev 在這方面的工作。我的目標是簡單介紹這兩種定義; 第一篇是關於 affine group scheme 的基本介紹,而在第二章和第三章我會清楚地介紹這兩種定義以及目前能得到的結果; 最後我用基本的 Galois theory 來證明這兩種定義是等價的。
這篇論文大部份的內容是重新整理 [KMRT], [BF], and [Ka] 裡頭關於必要維度的結果,而引理 1.1.2 以及命題 3.4.1是由我獨立完成的。 The name 'essential dimension' was given by J.Bulher and Z.Reichstein [BR] and Z.Reichstein [Re] (see also [Ka]); Berhuy and Favi [BF] gives a functorial definition following Merkurjev. In this thesis, my goal is to show that this two definitions are equivalent; in Chapter 1 I'll recall some basic facts of affine group scheme; in Chapter 2 and Chapter 3 both two definitions of essential dimension will be mentioned; finally, in Chapter 3 I'll prove such definitions are compatible. The thesis is re-organization of contents of [KMRT], [BF], and [Ka] , and Lemma 1.1.2 and Proposition 3.4.1 are proven by myself. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30653 |
| Fulltext Rights: | 有償授權 |
| Appears in Collections: | 數學系 |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-96-1.pdf Restricted Access | 337.25 kB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
