Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 財務金融學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30256
Title: 購併活動目標公司預測模型之研究-以台灣上市櫃電子業為例
Predicting Merger and Acquisition Targets:An Empirical Study of Electronic Industry in Taiwan
Authors: Chih-Wei Wang
王智威
Advisor: 邱顯比
Keyword: 二元羅吉斯迴歸,因素分析,向前逐步迴歸,門檻率,
binary logit regression,factor analysis,forward stepwise regression,cutoff,
Publication Year : 2007
Degree: 碩士
Abstract: 公司可能因為各種不同理由而成為購併活動的標的。這些理由可以被量化而以會計、財務或市場變數來代表。過去有許多國外學者以這些理由為基礎形成假說,進而以對應的代理變數建構出購併活動中目標公司的預測模型。這篇研究即是將此一概念應用於台灣的上市櫃電子業,試圖建立出一套可以預測出目標公司的模型,並觀察是否可利用此模型獲取超額報酬。此研究中樣本區分為估計性和驗證性兩類,前者用於模型建構而後者則用於檢定超額報酬。在研究方法上,使用二元向前逐步羅吉斯迴歸建構預測模型,分類及預估正確性則運用三種門檻率進行檢測,並利用最小化錯誤成本之門檻率決定潛在被併標的,最後形成投資組合以檢驗模型賺取超額報酬的可能性。
實證結果顯示,在預測模型所使用的六個假說變數中,公司規模、經理人不效率及股利發放假說的代理變數是顯著的。在三種不同門檻率檢測下,模型皆具有高且顯著的整體分類正確性及預估正確性。然而無論在何種門檻率之下,模型對於目標公司的發掘能力卻非常差,以致於預測出之潛在目標公司所形成之投資組合未明顯擊敗大盤指數,而無法利用此預測模型賺取超額報酬。此一結論也與過去國外學者所得到的結論相同。
Firms may be merged or acquired for various reasons, some of these reasons are hypothesized and quantified into accounting, financial, or market variables. In previous studies, these variables were used to develop a target prediction model for foreign firms. The same concept is applied in this study to the Taiwan electronic industry. A forward stepwise binary logit regression is used to construct the model. Three different types of cutoff are used to test the classifying and predictive accuracy for the estimation sample and the holdout sample respectively. A portfolio of predicted targets is constructed using a cost-minimizing cutoff to test the possibility of earning excess returns from the model.
The empirical results show that among six variables which are hypothesized to be important factors in predicting M&A targets, only three of them: net sales, return on equity, and retention rate, are found to be significant. The overall classifying and predicting accuracies of the model perform significantly better than pure chance, regardless of which cutoff is used. However, the ability of identifying M&A targets is quiet poor, indicating that it is difficult to earn excess returns from the model predictions. This conclusion is consistent with previous studies.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30256
Fulltext Rights: 有償授權
Appears in Collections:財務金融學系

Files in This Item:
File SizeFormat 
ntu-96-1.pdf
  Restricted Access
431.18 kBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved