Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30077
Title: | 四個元素的 Frobenius 問題與半群的對稱性 Frobenius Problem on Four Elements and Symmetry of Semigroups |
Authors: | Yi-Ting Chang 張憶婷 |
Advisor: | 朱樺(Huah Chu) |
Keyword: | Frobenius問題,半群,對稱性, Frobenius problem,semigroup,symmetry, |
Publication Year : | 2007 |
Degree: | 碩士 |
Abstract: | 令 $a,b,c,d$ 為一組獨立的正整數。若一個非負整數可表為 $c_1a+c_2b+c_3c+c_4d$ 的形式,其中 $c_i$ 均為非負整數,則稱它可被 $a,b,c,d$ 表示。
我們將給出在特殊情形中,不能由 $a,b,c,d$ 表出的非負整數個數 $n(a,b,c,d)$,及最大不可表的整數 $g(a,b,c,d)$。最後並討論由 $a,b,c,d$ 生成的半群對稱性。 Let $a,b,c,d$ be independent positive integers. A nonnegative integer is said to be represented by $a,b,c,d$ if it can be represented as the form $c_1a+c_2b+c_3c+c_4d$, where the $c_i$'s are nonnegative integers. We will find the number $n(a,b,c,d)$ of nonnegative integers cannot be represented by $a,b,c,d$, and the number $g(a,b,c,d)$ which is the largest integer cannot be represented by $a,b,c,d$ in some special cases. Finally we discuss the symmetry property of the semigroup generated by $a,b,c,d$. |
URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30077 |
Fulltext Rights: | 有償授權 |
Appears in Collections: | 數學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-96-1.pdf Restricted Access | 479.99 kB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.