請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29414
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳瑞碧 | |
dc.contributor.author | Ning-Jung Wu | en |
dc.contributor.author | 吳寧容 | zh_TW |
dc.date.accessioned | 2021-06-13T01:06:29Z | - |
dc.date.available | 2010-07-30 | |
dc.date.copyright | 2007-07-30 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-07-20 | |
dc.identifier.citation | 中山保子、陳雪芬、林玉盞、徐型堅:關於番石榴對於 Alloxan 糖尿病家兔的降血糖作用及當作健康食品的評估。北醫學報,10: 97-102 (1979)。
甘偉松:台灣藥用植物誌 (3),pp. 614-6。中國醫藥出版社,台北(1970)。 行政院衛生署。行政院衛生署衛生統計資訊網。http://www.doh.gov.tw (2006). 行政院衛生署:糖尿病防治手冊。遠流出版公司。台北(1998)。 何橈通:糖尿病之診斷、分類、致病機轉及藥物治療。保健食品調節血脂與血糖功能性實驗研討會,p. 21,台北(2001)。 吳宗儒:番石榴葉之酚性成分之研究。台北醫學院藥學研究所碩士論文(1992)。 李淑華:番石榴降血糖成分之研究 (二)。國立台灣大學藥學研究所碩士論文(1986)。 林宏達:糖尿病的診斷,分類與病因。藥學雜誌,8(1): 12-20(1992)。 林惠美:脫水番石榴果實切片之水抽出物改善大白鼠耐糖效果與其機制之研究。國立台灣大學食品科技研究所碩士論文(1995)。 侯珈禎:升麻及紅番石榴葉極性成分之研究。台北醫學院藥學研究所碩士論文(1996)。 張惠香:番石榴降血糖成分之研究。國立台灣大學藥學研究所碩士論文(1983)。 陳佩芬:人蔘皂苷 Rh2 降血糖機轉之研究。國立成功大學藥理學研究所碩士論文(2004)。 陳紀樺:血糖調節機制及功效評估。食品工業,34(6): 2-18(1992)。 葉昌河:紅番石榴及率珊瑚極性成分之研究。台北醫學院藥學研究所碩士論文(1997)。 裴馰:胰島素敏感度,葡萄糖敏感度及貝它細胞分泌功能在第二型糖尿病致病機轉所扮演的角色。中華民國內分泌暨糖尿病學會會訊,36: 4-7(1996)。 趙有誠、傅茂祖、宣立人、鄭啟源、許惠垣、黃漢文、李佳彗、張仙平:國人常用水果對糖尿病患者血糖及血清胰島素之影響。醫學研究,6: 243-8 (1986)。 潘長玉、尹士男:胰島素抵抗-二型糖尿病發病機制的重要因素。中華內分泌代謝雜誌,16(1): 56-57(2000)。 鄭瑞棠、楊仁壽:番石榴對家兔的降血糖作用。中華醫誌,31: 182-7 (1983)。 賴明宏:飲食中補充米麩或三價鉻對第二型糖尿病患或 STZ 誘導的糖尿病大白鼠醣類及脂質代謝之影響。台北醫學院藥學研究所博士論文(2002)。 謝昌勳:糖尿病最新診斷標準與分類,美國糖尿病學會1997 年報告。國防醫學,30: 468-473(1990)。 蘇慧真:中藥葛根素降血糖作用之研究。國立成功大學藥理學研究所碩士論文(2001)。 Abdel-Rahim EA, El-Saadany SS, Abo-Eytta AM, Wasif MM. 1992. The effect of sammo administration on some fundamental enzymes of pentose phosphate pathway and energy metabolites of alloxanized rats. Nahrung 36: 8-14. Araki E, Lipes MA, Patti ME, Bruning JC, Haag B 3rd, Johnson RS, Kahn CR. 1994. Alternative pathway of insulin signaling in mice with targeted disruption of the IRS-1 gene. Nature 372: 186-190. Ashokkumar N, Pari L. 2005. Effect of N-benzoyl-D-phenylalanine and metformin on carbohydrate metabolic enzymes in neonatal streptozotocin diabetic rats. Clinica Chimica Acta 351: 105-113. Baldwin SA. 1993. Mammalian passive glucose transporters: members of a ubiquitous family of active and passive transport proteins. Biochim Biophys Acta 1154: 17-49. Barzilai N, Rossetti L. 1993. Role of glucokinase and glucose-6-phosphatase in the acute and chronic regulation of hepatic glucose fluxes by insulin. J Biol Chem 268: 25019–25025. Bedoya FJ, Solano F, Lucas M. 1996. N-monomethyl-arginine and nicotinamide prevent streptozotocin-induced double strand DNA break formation in pancreatic rat islets. Experientia 52: 344-347. Begum S, Hassan SI, Siddiqui BS, Shaheen F, Ghayur MN, Gilani AH. 2002a. Triterpenoids from the leaves of Psidium guajava. Phytochem 61: 399-403. Begum S, Hassan SI, Siddiqui BS. 2002b. Two new triterpenoids from the fresh leaves of Psidium guajava. Planta Med 68: 1149-1152. Bergman RN, Finegood DT, Kahn SE. 2002. The evolution of β-cell dysfunction and insulin resistance in type 2 diabetes. Eur J Clin Invest 32: 35-45. Bradford M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254. Brands MW, Garrity CA, Hall JE. 1993. High fructose diet dose not cause hypertension in rats. Am J Hypertens 59A. Abstract. Burchell A, Waddell ID. 1991. The molecular basis of the hepatic microsomal glucose-6-phosphatase system. Biochim Biophys Acta 1092: 129-137. Butler AA, LeRoith D. 2001. Tissue-specific versus generalized gene targeting of the igf1 and igf1r genes and their roles in insulin-like growth factor physiology. Endocrinology 142: 1685-1688. Cheng JT, Yang RS. 1983. Hypoglycemic effect of guava juicu in mice and human subjects. Am J Chi Med 11: 74-76. Cichy SB, Uddin S, Danilkovich A, Guo S, Klippel A, Unterman TG. 1998. Protein kinase B/Akt mediates effect of insulin on hepatic insulin-like growth factor-binding protein-1 gene expression through a conserved insulin response sequence. J Biol Chem 273: 6482-6487. Clarke WL, Larner J, Pohn SC. 1986. Methods in diabetes research. Vol 2. John Wiley and Sous, ENC. New York. pp 39-86. Clore JN, Stillman J, Sugerman H. 2000. Glucose-6-phosphatase flux in vitro is increased in type 2 diabetes. Diabetes 49: 969-974. DeFronzo RA, Bonadonna RC, Ferrennini E. 1992. Pathogenesis of NIDDM: a balanced overview. Diabetes Care 15: 318-368. Delaney CA, Dunger A, Di Matto M, Cunningham JM, Green MH, Green IC. 1995. Comparison of inhibition of glucose-stimulated insulin secretion in rat islets of Langerhans by streptozotocin and methyl and ethyl nitrosoureas and methanesulphonates. Lack of correlation with nitric oxide-releasing or O6-alkylating ability. Biochem Pharmacol 50: 2015-2020. Diabetes care. 2001. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Vol. 24 Sup 1, S5-S20 Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal Chem 28: 350-356. Elsner M, Guldbakke B, Tiedge M, Munday R, Lenzen S. 2000. Relative importance of transport and alkylation for pancreatic beta-cell toxicity of streptozotocin. Diabetologia 43: 1528-1533. Espinal J, Challiss RA, Newsholme EA. 1983. Effect of adenosine deaminase and an adenosine analoguae on insulin sensitivity in soleus muscle of the rat. FEBS Lett 158: 103-106. Fantin VR, Wang Q, Lienhard GE, Keller SR. 2000. Mice lacking insulin receptor substrate 4 exhibit mild defects in growth, reproduction, and glucose homeostasis. Am J Physiol Endocrinol Metab 278: E127-133. Fischer LJ. 1985. Drug and chemicals that produce diabetes. Pharmacol Sci 6: 72-75. Fry JR, Jones CA, Wiebkin P, Bellemann P, Bridges JW. 1975. The enzymic isolation of adult rat hepatocytes in a functional and viable state. Anal Biochem 71: 341-350. Gerich JE. 1998. The genetic basis of type 2 diabetes mellitus: impaired insulin secretion versus impaired insulin sensitivity. Endocr Rev 19: 491-503. Gliemann J, Rees WD, Foley JA. 1984. The fate of labeled glucose molecules in the rat adipocytes dependence on glucose concentration. Biochim Biophys Acta 804: 68-76. Hamman RF. 1992. Genetic and environmental determinants of non- insulin dependent diabetes mellitus (NIDDM). Diabetes Metab Rev 8: 287-338. Iwanishi M, Kobayashi M. 1993. Effect of pioglitazone on insulin receptors of skeletal muscles from high-fat-fed rats. Metabolism 42: 1017-1021. James L. Groff, Sareen S. Gropper. 2003. Carbohydrates. Advanced nutrition and human metabolism. Singapore: Thomson Learning. Jeng CY, Sheu WH, Fuh MM, Chen YD, Reaven GM. 1994. Relationship between hepatic glucose production and fasting plasma glucose concentration in patients with NIDDM. Diabetes 43: 1440-1444. Kahn SE. 2000. The importance of the beta-cell in the pathogenesis of type 2 diabetes mellitus. Am J Med 108: 2S-8S. Kido Y, Burks DJ, Withers D, Bruning JC, Kahn CR, White MF, Accili D. 2000. Tissue-specific insulin resistance in mice with mutations in the insulin receptor, IRS-1, and IRS-2. J Clin Invest 105: 199-205. Klover PJ, Mooney RA. 2004. Hepatocytes: critical for glucose homeostasis. 36: 753-758. Kroncke KD, Fehsel K, Sommer A, Rodriguez ML, Kolb-Bachofen V. 1995. Nitric oxide generation during cellular metabolization of the diabetogenic N-methyl-N-nitroso-urea streptozotocin contributes to islet cell DNA damage. Biol Chem Hoppe Seyler 376: 179-185. Lietzke SE, Bose S, Cronin T, Klarlund J, Chawla A, Czech MP, Lambright DG. 2000. Structural basis of 3-phosphoinositide recognition by pleckstrin homology domains. Mol Cell 6: 385-394. Lozoya X, Meckes M, Abou-Zaid M, Tortoriello J, Nozzolillo C, Arnason JT. 1994. Quercetin glycosides in Psidium guajava L. leaves and determination of a spasmolytic principle. Arch Med Res 25: 11-15. Maruyams Y, Matsuda H, Matsuda R, Kubo M, Hatano T, Okuda T. 1985. Study on Psidium guajava L. (1) Antidiabetic effect and effective components of the leaf of Psidium guajava L.(Part 1) Shoyakugaku Zasshi 39: 261-269. Masiello P, Broca C, Gross R, Roye M, Manteghetti M, Hillarire-Buys D, Novelli M, Ribes G. 1998. Experimental NIDDM: development of a new model in adult rats administred streptozotocin and nicotinamide. Diabetes 47: 224-229. Masiello P, Novelli M, Fierabracci V, Bergamini E. 1990. Protection by 3-aminobenzamide and nicotinamide against streptozotocin-induced beta-cell toxicity in vivo and in vitro. Res Commun Chem Pathol Pharmacol 69: 17-32. Meckes M, Calzada F, Tortoriello J, Gonzalez JL, Matinez M. 1996. Terpenoids isolated from Psidium guajava hexane extract with depressant activity on central nervous system. Phytother Res 10: 600-603. Mithieux G, Vidal H, Zitoun C, Bruni N, Daniele N, Minassian C. 1996. Glucose-6-phosphatase mRNA and activity are increased to the same extent in kidney and liver of diabetic rats. Diabetes 45: 891-896. Moore MC, Cherrington AD, Wasserman DH. 2003. Regulation of hepatic and peripheral glucose disposal. 17: 343-364. Morgan NG, Cable HC, Newcombe NR, Williams GT. Treatment of cultured pancreatic B-cells with streptozotocin induces cell death by apoptosis. Biosci Rep 14: 243-250. Mukhtar HM, Ansari SH, Ali M, Naved T, Bhat ZA. 2004. Effect of water extract of Psidium guajava leaves on alloxan-induced diabetic rats. Pharmazie 59: 734-735. Myers MG, Backer JM, Sun XJ, Shoelson S, Hu P, Schlessinger J, Yoakim M, Schaffhausen B, White MF. 1992. IRS-1 activates phosphatidylinositol 3'-kinase by associating with src homology 2 domains of p85. Proc Natl Acad Sci USA 89: 10350-10354. Nagayama F, Ohshima H, Umezawa K. 1972. Distribution of glucose-6-phosphate metabolizing enzyme in fish. Bull Jpn Soc Sci Fish 38: 589-593. Nishio T, Toyoda Y, Hiramatsu M, Chiba T, Miwa I. 2006. Decline in glucokinase activity in the arcuate nucleus of streptozotocin-induced diabetic rats. 29: 216-219. Nordlie RC. 1985. Fine tuning of blood glucose concentrations. Trends Biochem Sci 10: 70-80. Novelli M, Fabregat ME, Fernandez-Alvarez J, Gomis R, Masiello P. 2001. Metabolic and functional studies on isolated islets in a new rat model of type 2 diabetes. Mol Cell Endocrinol 175: 57-66. Nukatsuka M, Yoshimura Y, Nishida M, Kawada J. 1990. Importance of the concentration of ATP in rat pancreatic beta cells in the mechanism of streptozotocin-induced cytotoxicity. J Endocrinol 127: 161-165. Oh WK, Lee CH, Lee MS, Bae EY, Sohn CB, Oh H, Kim BY, Ahn JS. 2005. Antidiabetic effects of extracts from Psidium guajava. J Ethnopharmacol 96: 411-415. Panneerselvam RS, Govindaswamy S. 2002. Effect of sodium molybdate on carbohydrate metabolizing enzymes in alloxan-induced diabetic rats. J Nutr Biochem 13: 21-26. Pari L, Satheesh MA. 2004. Antidiabetic activity of Boerhaavia diffusa L.: effect on hepatic key enzymes in experimental diabetes. J Ethnopharmacol 91: 109-113. Patti ME, Kahn CR. 1998. The insulin receptor-a critical link in glucose homeostasis and insulin action. J Basic Clin Physiol Pharmacol 9: 89-109. Pessin JE, Saltiel AR. 2000. Signaling pathways in insulin action: molecular targets of insulin resistance. J Clin Invest 106: 165-169. Pilkis SJ, Mahgrabi MR, Claus TH. 1988. Hormonal regulation of hepatic gluconeogenesis and glycolysis. Annu Rev Biochem 57: 755-783. Rate SM. 2001. Plants as source of drugs. Toxicon 39: 603-613. Rodrigues B, Poucheret P, Battell ML, McNeill JH. 1999. Streptozotocin-induced diabetes: induction, mechanism(s), and dose dependency. In Experimental models of diabetes. J. H. McNeill (ed.), CRC Press LLC, Boca Raton, Florida, USA, pp. 6-13 Saltiel AR, Kahn CR. 2001. Insulin signaling and the regulation of glucose and lipid metabolism. Nature 414: 799-806. Schnedl WJ, Ferber S, Johnson JH, Newgard CB. 1994. STZ transport and cytotoxicity. Specific enhancement in GLUT2-expressing cells. Diabetes 43: 1326-1333. Seshadri TR, Vasishta K. 1965. Polyphenols of the leaves of Psidium guajava – quercetin, guaijaverin, leucocyanidin and amritoside. Phytochem 4: 989-992. Shepherd PR, Nave BT, Siddle K. 1995. Insulin stimulation of glycogen synthesis and glycogen synthase activity is blocked by wortmannin and rapamycin in 3T3-L1 adipocytes: evidence for the involvement of phosphoinositide 3-kinase and p70 ribosomal protein-S6 kinase. Biochem J 305: 25-28. Shibib BA, Khan LA, Rahman R. 1993. Hypoglycaemic activity of Coccinia indica and Momordica charantia on diabetic rats: depression of the hepatic gluconeogenic enzymes glucose-6-phosphatase and fructose-1,6-bisphosphatase and elevation of both liver and red-cell shunt enzyme glucose-6-phosphate dehyrogenase. Biochem J 292: 267-270. Silva FR, Szpoganicz B, Pizzolatti MG, Willrich MA, de Sousa E. 2002. Acute effect of Bauhinia forficata on serum glucose levels in normal and alloxan-induced diabetic rats. J Ethnopharmacol 83: 33-37. Sleder J, Chen YDI, Cully MJ. 1980. Hyperinsulinemia in fructose-induced hypertriglyceridemia in the rat. Metaboliam 29: 303-305. Sofue M, Yoshimura Y, Nishida M, Kawada J. 1991. Uptake of nicotinamide by rat pancreatic beta cells with regard to streptozotocin action. J Endocrinol 131: 135-138. Szkudelski T. 2001. The mechanism of alloxan and streptozotocin action in β cells of the rat pancreas. Physiol Res 50: 536-546. Takana T, Ishida N, Ishimatsu M, Nonaka G, Nishioka I. 1992. Tannins and related compounds. CXⅥ. Six new complex tannins, guajavins, psidinins and psiguavin from the bark of Psidium guajava L.. Chem Pharm Bull 40: 2092-2098. Takasu N, Komiya I, Asawa T, Nagasawa Y, Yamada T. 1991. Streptozotocin- and alloxan-induced H2O2 generation and DNA fragmentation in pancreatic islets. H2O2 as mediator for DNA fragmentation. Diabetes 40: 1141-1145. Tamemoto H, Kadowaki T, Tobe K, Yagi T, Sakura H, Hayakawa T, Terauchi Y, Ueki K, Kaburagi Y, Satoh S. 1994. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature 372: 182-186. The American Diabetes Association. 1997. Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 20: 1183-1197. Thulesen J, Orskov C, Holst JJ, Poulsen SS. 1997. Short-term insulin treatment prevents the diabetogenic action of streptozotocin in rats. Endocrinology 138: 62-68. Tobey TA, Mondon CE, Zavaroni I, Reaven GM. 1982. Mechanism of insulin resistance in fructose-fed rats. Metaboliam 31: 608-612. Tsuruzoe K, Emkey R, Kriauciunas KM, Ueki K, Kahn CR. 2001. Insulin receptor substrate 3 (IRS-3) and IRS-4 impair IRS-1- and IRS-2-mediated signaling. Mol Cell Biol 21: 26-38. Turk J, Corbett JA, Ramanadham S, Bohrer A, McDaniel ML. 1993. Biochemical evidence for nitric oxide formation from streptozotocin in isolated pancreatic islets. Biochem Biophys Res Commun 197: 1458-1464. Ugochukwu NH, Babady NE. 2003. Antihyperglycemic effect of aqueous and ethanolic extracts of Gongronema latifolium leaves on glucose and glycogen metabolism in livers of nomal and streptozotocin-induced diabetic rats. Life Sci 73: 1925-1938. Wahren J, Felig P, Cerasi E, Luft R. 1972. Splanchnic and peripheral glucose and amino acid metabolism in diabetes mellitus. J Clin Invest 51: 1870-1878. Wang CL, Hsu FL, Lee HL. 2006. Antioxidant properties of extracts from Camellia tenuifolia. Tai¬wan J For Sci 21: 559-565. Withers DJ, Gutierrez JS, Towery H, Burks DJ, Ren JM, Previs S, Zhang Y, Bernal D, Pons S, Shulman GI, Bonner-Weir S, White MF. 1998. Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391: 900-904. Wolf G, Ziyadeh FN. 1999. Molecular mechanisms of diabetic renal hypertrophy. Kidney Int 56: 393-405. Yamamoto H, Uchigata Y, Okamoto H. 1981. Streptozotocin and alloxan induce DNA strand breaks and poly (ADP-ribose) synthetase in pancreatic islets. Nature 294: 284-286. Yki-Jarvinen H. 1997. Acute and chronic effects of hyperglycaemia on glucose metabolism, implications for the development of new therapies. Diabet Med 14: S32-37. Yusof RM, Said M. 2004. Effect of high fibre fruit (Psidium guajava L.) on the serum glucose level in induced diabetic mice. Asia Pac J Clin Nutr 13: S135. Zaragoza-Hermans N, Felber JP. 1972. Studies on the metabolic effects induced in the rat by a high fat diet. Isr J Med Sci 8: 856-857. Zierath JR, Kawano Y. 2003. The effect of hyperglycaemia on glucose disposal and insulin signal transduction in skeletal muscle. Best Pract Res Clin Endocrinol Metab 17: 385-398. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29414 | - |
dc.description.abstract | 糖尿病是現今常見的一種慢性代謝疾病,隨著生活品質的提昇及物質充裕,糖尿病病患的比例也日益增加。根據世界衛生組織預測,到西元 2025 年全球罹患糖尿病的人數將達到三億人。番石榴(Psidium guajava Linn.)屬桃金孃科(Myrtaceae),本省民間常將野生番石榴果實或葉片曬乾熬湯飲用,作為降火氣、清血、降血糖之用,是坊間盛行的糖尿病藥草療法。本研究係以低劑量 Streptozotocin(65 mg/Kg BW)與胰臟保護劑 Nicotinamide(230 mg/Kg BW)注射 Sprague-Dawley 大白鼠,使產生類似第二型糖尿病的動物模式,探討番石榴(Psidium guajava Linn.)葉部之水與乙醇萃取物的降血糖效果,及其對肝臟碳水化合物代謝之影響。結果顯示,在急性試驗中,番石榴葉水或醇萃物皆具有顯著延緩血糖上升的效果,且高劑量組(400 mg/Kg BW)效果優於低劑量組(200 mg/Kg BW)。而在長期灌食實驗中,期間於第四、六週進行口服葡萄糖耐受性試驗,結果顯示番石榴葉(灌食劑量 400 mg/Kg BW)水萃物或醇萃物均能明顯改善糖尿病鼠的葡萄糖耐受性;試驗動物於第六週犧牲後測其肝臟中碳水化合物代謝酵素活性變化,結果顯示長期灌食番石榴葉水萃物能活化肝臟 hexokinase(HKase)、phosphofructokinase(PFKase)、glucose-6-phosphate dehydrogenas(G6PDHase)活性及降低 fructose-1,6-bisphosphatase(F1,6BPase)、Glucose -6-phosphatase(G6Pase)活性,顯示其能促進葡萄糖進入 glycolysis pathway 及 pentose monophosphate shunt 並減少肝臟葡萄糖的釋放而降低血糖;灌食番石榴葉乙醇萃取物之糖尿病大鼠只有 HKase 與 G6PDHase 活性較糖尿病組高,而 PFKase、 F1,6BPase 及 G6Pase 活性與糖尿病組並沒有顯著差異(p<0.05)。分析管餵六週後,糖尿病大鼠的骨骼肌及肝臟細胞葡萄糖攝入能力及肝醣合成能力的變化,結果顯示管餵葉粗萃物並不會促進骨骼肌對葡萄糖的攝入能力,但能增加肝臟細胞對葡萄糖的攝入能力並促進肝醣合成。綜合所得的結果得知,番石榴葉萃出物具顯著的降血糖效果,且其降血糖效果乃是藉由改變其肝臟碳水化合物代謝酵素活性,並增強糖尿病大白鼠肝臟對葡萄糖的攝入及肝醣合成能力,因而降低糖尿病大白鼠的高血糖現象。 | zh_TW |
dc.description.abstract | Diabetes mellitus (DM) is one of the major diseases that human being eagerly wants to overcome. In 2006, DM was the fourth of top ten causes of death in Taiwan and more than 95% are type 2 DM. Guava (Psidium guajava Linn.) is one of the most important economic fruit in Taiwan. Leaves and fruit of guava are believed to have hypoglycemic effects which have been popularly employed in traditional DM treatment in Taiwan. However, there is insufficient scientific evidence for guava to cure DM, especially type 2 DM. In the present study, we injected low-dose streptozotocin (STZ) plus nicotinamide (NA) into Sprague-Dawley (SD) rats to induce Type 2 diabetes and to evaluate the antihyperglycemic effect and the carbohydrate metabolism of water and ethanol extracts from guava leaves. The study contains two parts, the acute and the long term experiments. In the acute experiment, the water or ethanol extracts of guava leaves were prepared and in the oral glucose tolerance test (OGTT) was performed to evaluate the hypoglycemic effects. In the long term experiment, we investigated the effect of aqueous or ethanol extracts from guava leaves in STZ–NA induced diabetic rats daily administered for 6 weeks.
Results of the acute experiment showed that plasma glucose levels of the diabetic rats administered with 200 or 400 mg/kg BW of aqueous or ethanol guava leaf extracts were lower than the diabetic control group (p<0.05). This indicated that aqueous or ethanol extracts from guava leaves could effectively delay the rise of plasma glucose after feeding in diabetic rats. Diabetic rats administered with 400 mg/kg BW of aqueous or ethanol guava leaf extracts significantly reduced plasma glucose than 200 mg/kg BW. Therefore, aqueous or ethanol extracts from guava leaves with dosage of 400 mg/kg BW were used to carry out the long term experiments. The result of the long term experiments, showed that the diabetes groups fed with 400 mg/kg BW of aqueous or ethanol guava leaf extracts presented a significantly reduction of blood sugar level comparing to diabetes and normal groups (both fed with saline) and could delay the elevation of plasma glucose during the OGTT test after the fourth and sixth weeks. The rats were sacrificed at the 6 weeks and the carbohydrate metabolism enzyme activities in liver were measured. The activities of hexokinase, phosphofructokinase, and glucose-6-phosphate dehydrogenas in diabetic rats fed with aqueous guava leaf extracts were higher than those of diabetic control rats (p<0.05), while the activity of fructose-1, 6-bisphosphatase and glucose-6-phosphatase was markedly lower than diabetic control rats (p<0.05). In addition, the activities of hexokinase and glucose-6-phosphate dehydrogenase in diabetic rats fed with ethanol guava leaf extracts were higher than diabetic control rats, while the activities of phosphofructokinase, fructose-1, 6-bisphosphatase, and glucose-6-phosphatase were no different with each group. The blood glucose reduction ability of extracts from guava leaves in diabetic rats may be related with the activity of hepatic carbohydrate metabolic enzymes. In additional, the abilities of glucose uptake and glycogen synthesis are significantly promoted in hepatocytes of diabetic rats treated with aqueous or ethanol extracts from guava leaves. These results indicate that extracts of guava leaves may regulate the plasma glucose in STZ–NA induced type 2 diabetic rats. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T01:06:29Z (GMT). No. of bitstreams: 1 ntu-96-R94641004-1.pdf: 1326831 bytes, checksum: a285541a73d5827df27c47c7622fa00a (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 中文摘要..................................................i
英文摘要.................................................ii 目錄.....................................................iv 表目錄.................................................viii 圖目錄...................................................ix 第一章 前言...............................................1 第二章 文獻整理...........................................2 第一節 番石榴.............................................2 一、番石榴簡介............................................2 二、番石榴葉成分之研究....................................2 三、番石榴抗糖尿病或降血糖之研究..........................3 四、番石榴抗糖尿病成分之研究..............................3 第二節 糖尿病.............................................4 一、糖尿病簡介............................................4 二、糖尿病的典型症狀......................................5 三、糖尿病及血糖恆定失調的診斷標準........................5 四、糖尿病分類............................................8 五、糖尿病形成的原因.....................................11 六、糖尿病的併發症.......................................12 第三節 胰島素訊息傳遞與作用..............................14 一、胰島素...............................................14 二、胰島素受體(Insulin receptor, IR)...................14 三、胰島素受體基質(Insulin receptor substrate, IRS)....14 四、磷酸肌醇3激酶(phosphatidylinositol-3-OH-kinase)....15 五、葡萄糖轉運蛋白(Glucose transporter, GLUT)..........15 六、胰島素在細胞層次之作用...............................17 七、胰島素阻抗...........................................17 第四節 糖尿病研究之動物模式..............................18 一、研究糖尿病的動物模式.................................18 二、Streptozotocin (STZ)化學誘導糖尿病動物模式...........19 第三章 研究動機與目的及實驗架構..........................23 第一節 研究動機與目的....................................23 第二節 實驗架構..........................................25 第四章 材料與方法........................................27 第一節 番石榴(Psidium guajava Linn.)葉粗萃物之製備.......27 一、實驗材料.............................................27 (一)原料...............................................27 (二)實驗藥品與試劑.....................................27 (三)實驗儀器...........................................27 二、萃取方法和步驟.......................................28 (一)樣品製備...........................................28 (二)樣品蛋白質含量測定.................................28 (三)樣品總醣含量測定...................................29 (四)樣品總酚含量測定...................................29 第二節 急性實驗:探討急性灌食番石榴葉粗萃物對 STZ-NA 誘發之第二型糖尿病大鼠葡萄糖耐受性的影響.......................30 一、實驗流程.............................................30 二、實驗材料.............................................31 (一)樣品來源...........................................31 (二)實驗動物...........................................31 (三)動物飼料...........................................31 (四)實驗藥品與試劑.....................................31 (五)實驗儀器...........................................31 三、實驗步驟和方法.......................................32 (一)動物飼養...........................................32 (二)動物分組及誘導.....................................32 (三)急性灌食番石榴葉之水及乙醇萃出物對 STZ-NA 誘導糖尿病大鼠口服葡萄糖耐受性之影響...............................33 (四)血液的收集與處理...................................33 (五)血漿葡萄糖濃度之測定...............................34 第三節 長效性試驗:探討連續餵食番石榴葉萃出物對 STZ-NA 誘發之第二型糖尿病大鼠的影響.................................35 一、實驗流程.............................................35 二、實驗材料.............................................36 (一)樣品來源...........................................36 (二)實驗動物...........................................36 (三)動物飼料...........................................36 (四)實驗藥品與試劑.....................................36 (五)實驗儀器...........................................39 三、實驗步驟和方法.......................................40 (一)動物飼養...........................................40 (二)動物誘導及分組.....................................40 (三)長效性試驗.........................................40 (四)試驗方法...........................................41 1. 口服葡萄糖耐受性實驗..................................41 2. 血液處理..............................................41 3. 臟器的收集............................................41 4. 血漿葡萄糖濃度之測定..................................42 5. 血漿胰島素濃度之測定..................................42 6. 肝臟酵素活性測定......................................42 7. 血糖調控相關蛋白質含量之測定..........................44 8. 大鼠肝臟細胞葡萄糖攝入能力及及肝醣合成作用............48 9. 肝臟肝醣合成測定法....................................50 10. 大鼠骨骼肌對葡萄糖攝入測定...........................50 11. 統計分析.............................................51 第五章 結果..............................................52 第一節 番石榴(Psidium guajava Linn.)葉粗萃物之製備.......52 一、萃出率之測定.........................................52 二、樣品蛋白質、總醣及總酚含量...........................52 第二節 急性實驗:探討急性灌食番石榴葉粗萃物對 STZ-NA 誘發之第二型糖尿病大鼠葡萄糖耐受性的影響.......................53 一、番石榴葉粗萃物對大鼠口服葡萄糖耐受性影響.............53 第三節 長效性試驗:探討連續餵食番石榴葉粗萃物對 STZ-NA 誘發之第二型糖尿病大鼠的影響.................................54 一、葡萄糖耐受性實驗結果.................................54 (一)灌食番石榴葉粗萃物前之OGTT 血糖變化................54 (二)灌食番石榴葉粗萃物4週後 OGTT 血糖之變化............54 (三)灌食番石榴葉粗萃物6週後 OGTT 血糖之變化............55 (四)灌食番石榴葉粗萃物6週後 OGTT 胰島素之變化..........55 二、實驗期間大鼠體重變化.................................55 三、臟器相對重量.........................................56 四、肝臟碳水化合物代謝酵素活性變化.......................56 (一)Hexokinase (HKase) ................................56 (二)Phosphofructokinase(PFKase)......................56 (三)G-6-phosphate dehydrogenase(G6PDase).............56 (四)Fructose-1,6-biphosphatase(F1,6BPase)............57 (五)Glucose-6-phosphatase (G-6-Pase) ..................57 五、血糖調控相關蛋白質含量之測定.........................57 六、番石榴葉萃出物對第二型糖尿病大鼠骨骼肌葡萄糖攝入能力的影響.....................................................58 七、番石榴葉萃出物對第二型糖尿病大鼠肝細胞葡萄糖攝入能力及肝醣合成作用的影響.......................................58 第六章 討論..............................................60 一、急性灌食番石榴葉粗萃物對大鼠葡萄糖耐受性的影響.......60 二、連續餵食番石榴葉粗萃物對 STZ-NA 誘發之第二型糖尿病大鼠葡萄糖耐受性及胰島素濃度的影響...........................60 三、連續餵食番石榴葉粗萃物對第二型糖尿病大鼠體重及臟器重量變化的影響...............................................61 四、連續餵食番石榴葉粗萃物對第二型糖尿病大鼠肝臟醣類代謝的影響.....................................................61 五、連續餵食番石榴葉粗萃物對第二型糖尿病大鼠肝臟細胞葡萄糖轉運蛋白Ⅱ表現量的影響...................................63 六、連續餵食番石榴葉粗萃物對第二型糖尿病大鼠第二型糖尿病大鼠骨骼肌葡萄糖攝入能力的影響.............................64 七、連續餵食番石榴葉粗萃物對第二型糖尿病大鼠肝細胞葡萄糖攝入能力及肝醣合成作用的影響...............................64 第七章 結論..............................................65 參考文獻.................................................83 表目錄 表 一、糖尿病診斷標準.....................................7 表 二、人類的葡萄糖轉運蛋白..............................16 表 三、番石榴葉水萃出物與乙醇萃出物蛋白質、總醣及總酚含量.......................................................66 表 四、餵食番石榴葉萃出物六週後對第二型糖尿病鼠器官相對重量之影響...................................................67 圖目錄 圖 一、糖尿病分類.......................................10 圖 二、Streptozotocin 之化學結構........................21 圖 三、STZ造成大鼠胰臟β細胞死亡之機制...................21 圖 四、實驗架構.........................................24 圖 五、急性灌食番石榴葉萃出物並進行口服葡萄糖耐受性試驗對糖尿病大鼠血漿葡萄糖濃度變化之影響.......................68 圖 六、糖尿病大鼠長期灌食番石榴葉萃出物前進行口服葡萄糖耐受性試驗時血漿葡萄糖濃度之變化...........................69 圖 七、灌食番石榴葉萃出物四週後進行口服葡萄糖耐受性試驗時糖尿病大鼠血漿葡萄糖濃度之變化...........................70 圖 八、灌食番石榴葉萃出物六週後進行口服葡萄糖耐受性試驗時糖尿病大鼠血漿葡萄糖濃度之變化...........................71 圖 九、灌食番石榴葉萃出物六週後進行口服葡萄糖耐受性試驗時糖尿病大鼠血漿胰島素濃度之變化...........................72 圖 十、長期灌食番石榴葉萃出物六週期間大鼠體重變化.......73 圖十一、灌食番石榴葉萃出物六週後大鼠肝臟 hexokinase活性..74 圖十二、灌食番石榴葉萃出物六週後大鼠肝臟 phosphofructokinase活性..................................75 圖十三、灌食番石榴葉萃出物六週後大鼠肝臟glucose-6-phosphate dehydrogenase活性..............................76 圖十四、灌食番石榴葉萃出物六週後大鼠肝臟fructose-1,6-bisphosphatase活性.......................................77 圖十五、灌食番石榴葉萃出物六週後大鼠肝臟 Glucose-6-phosphatase 活性.........................................78 圖十六、灌食番石榴葉萃出物六週後大鼠肝臟細胞葡萄糖轉運蛋白Ⅱ之含量.................................................79 圖十七、灌食番石榴葉萃出物六週對糖尿病大鼠骨骼肌葡萄糖攝入作用的影響...............................................80 圖十八、灌食番石榴葉萃出物六週後對大鼠肝臟細胞葡萄糖攝入作用的影響.................................................81 圖十九、灌食番石榴葉萃出物六週後對大鼠肝臟細胞肝醣合成之影響.......................................................82 | |
dc.language.iso | zh-TW | |
dc.title | 番石榴葉萃出物對streptozotocin-nicotinamide誘發第二型糖尿病大白鼠血糖之影響 | zh_TW |
dc.title | Hypoglycemic effect of guava (Psidium guajava Linn.) leaf extracts in streptozotocin-nicotinamide induced type 2 diabetic rats | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 沈賜川 | |
dc.contributor.oralexamcommittee | 鄭瑞棠,江孟燦 | |
dc.subject.keyword | 番石榴,糖,尿,病,降,血糖,作用,口服葡萄糖,耐受性試驗,碳水化合物代謝, | zh_TW |
dc.subject.keyword | Psidium guajava Linn.,diabetes,antihyperglycemic effect,OGTT,carbohydrate metabolism, | en |
dc.relation.page | 91 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-07-23 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 食品科技研究所 | zh_TW |
顯示於系所單位: | 食品科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 1.3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。