Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28744
Title: 強健性語音辨識中使用粒子群演算法之前端特徵處理
Front-End Feature Processing using Particle Filter for Robust Speech Recognition
Authors: Po-Han Chu
祝伯翰
Advisor: 李琳山
Keyword: 粒子群演算法,追蹤,強健性語音,去雜訊,最小方均差去雜訊法,
Particle Filter,Robust speech recognition,MMSE denoise,
Publication Year : 2007
Degree: 碩士
Abstract: 為了使語音可以成為隨時隨地都可以使用的人機介面,探討如何降低環境不匹配對辨識率影響的強健性研究,變成為一個很重要的研究方向。本論文即是藉由在前端對「對數梅爾頻譜能量」的處理,來提升對聲學環境改變的強健性
本論文應用粒子群演算法追蹤在「對數梅爾頻譜能量」上的雜訊,它能夠利用一群粒子模擬雜訊的分佈,並且找到接近真正雜訊的向量,隨之利用最小方均差去雜訊法將追蹤到的雜訊從含雜訊的語音中去除掉。
若要達到準確的預測,粒子群必須要先取樣在真正雜訊的附近,因此我們用三種方法作最初的取樣,1.「隨機撒種法」, 2. 「自我迴歸模型」,3. 「延伸式卡式濾波器」,最後實驗證明「延伸式卡式濾波器」最能預測雜訊的位置。在國際標準測試環境Aurora2之下對各種雜訊及各種訊噪比進行平均,使用「延伸式卡式濾波器」為先前取樣的粒子群濾波器其辨識率為77.77,使用前為60.06;除了地鐵和展覽場雜訊之外,其他各種雜訊環境下的辨識率均獲得有效的提升。
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28744
Fulltext Rights: 有償授權
Appears in Collections:電信工程學研究所

Files in This Item:
File SizeFormat 
ntu-96-1.pdf
  Restricted Access
735.08 kBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved