請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28546完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王勝仕(Sheng-Shih Wang) | |
| dc.contributor.author | Yu-Chi Lin | en |
| dc.contributor.author | 林煜祺 | zh_TW |
| dc.date.accessioned | 2021-06-13T00:11:41Z | - |
| dc.date.available | 2007-07-31 | |
| dc.date.copyright | 2007-07-31 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-27 | |
| dc.identifier.citation | Batas, B. and J. B. Chaudhuri (2001). 'The influence of operational parameters on lysozyme refolding using size-exclusion chromatography.' Bioprocess and Biosystems Engineering 24(4): 255-259.
Batas, D. and J. B. Chaudhuri (1996). 'Protein refolding at high concentration using size-exclusion chromatography.' Biotechnology and Bioengineering 50(1): 16-23. Bellomo, G., F. Mirabelli, et al. (1987). 'Formation and reduction of glutathione-protein mixed disulfides during oxidative stress-A study with isolated hepatocytes and menadione(2-methyl-1,4-naphthoquinone).' Biochemical Pharmacology 36(8): 1313-1320. Brameld, K. A., W. D. Shrader, et al. (1998). 'Substrate assistance in the mechanism of family 18 chitinases: Theoretical studies of potential intermediates and inhibitors.' Journal of Molecular Biology 280(5): 913-923. Burgess, R. R. (1996). Purification of overproduced Escherichia coli RNA polymerase sigma factors by solubilizing inclusion bodies and refolding from Sarkosyl. Rna Polymerase and Associated Factors, Pt A. 273: 145-149. Camera, E. and M. Picardo (2002). 'Analytical methods to investigate glutathione and related compounds in biological and pathological processes.' Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 781(1-2): 181-206. Camera, E., M. Rinaldi, et al. (2001). 'Simultaneous determination of reduced and oxidized glutathione in peripheral blood mononuclear cells by liquid chromatography-electro spray mass spectrometry.' Journal of Chromatography B 757(1): 69-78. Cardamone, M., N. K. Puri, et al. (1995). 'Comparing the refolding and reoxidation of recombinant porcine growth-hormone from a urea denatured state and from escherichia-coliinclusion-bodies.' Biochemistry 34(17): 5773-5794. Clark, E. D., D. Hevehan, et al. (1998). 'Oxidative renaturation of hen egg-white lysozyme. Folding vs aggregation.' Biotechnology Progress 14(1): 47-54. Cotgreave, I. A. and R. G. Gerdes (1998). 'Recent trends in glutathione biochemistry - Glutathione-protein interactions: A molecular link between oxidative stress and cell proliferation?' Biochemical and Biophysical Research Communications 242(1): 1-9. El-Ayaan, U. and W. Linert (2002). 'A kinetic study of the reaction between glutathione and iron(III) in the pH range from 1 to 3.' Journal of Coordination Chemistry 55(11): 1309-1314. Esposito, G., J. Garcia, et al. (2003). 'Structural and folding dynamic properties of the T70N variant of human lysozyme*.' Journal of Biological Chemistry 278(28): 25910-25918. Fahlgren, A., S. Hammarstrom, et al. (2003). 'Increased expression of antimicrobial peptides and lysozyme in colonic epithelial cells of patients with ulcerative colitis.' Clinical and Experimental Immunology 131(1): 90-101. Goto, M., Y. Hashimoto, et al. (2000). 'Important parameters affecting efficiency of protein refolding by reversed micelles.' Biotechnology Progress 16(6): 1079-1085. Gu, Z. Y., Z. G. Su, et al. (2001). 'Urea gradient size-exclusion chromatography enhanced the yield of lysozyme refolding.' Journal of Chromatography A 918(2): 311-318. Hansen, J. M., H. Zhang, et al. (2006). 'Differential oxidation of thioredoxin-1, thioredoxin-2, and glutathione by metal ions.' Free Radical Biology and Medicine 40(1): 138-145. Hevehan, D. L. and E. D. Clark (1996). 'Oxidative renaturation of lysozyme at high concentrations.' Abstracts of Papers of the American Chemical Society 211: 49-BIOT. Hogg, N., R. J. Singh, et al. (1996). 'The role of glutathione in the transport and catabolism of nitric oxide.' Febs Letters 382(3): 223-228. Katoh, S. and Y. Katoh (2000). 'Continuous refolding of lysozyme with fed-batch addition of denatured protein solution.' Process Biochemistry 35(10): 1119-1124. Katoh, S., Y. Sezai, et al. (1999). 'Refolding of enzymes in a fed-batch operation.' Process Biochemistry 35(3-4): 297-300. Kurucz, I., J. A. Titus, et al. (1995). 'Correct disulfide pairing and efficient refolding of detergent-solubilized single-chain Fv proteins from bacterial inclusion bodies.' Molecular Immunology 32(17-18): 1443-1452. Lanckriet, H. and A. P. J. Middelberg (2004). 'Continuous chromatographic protein refolding.' Journal of Chromatography A 1022(1-2): 103-113. Langenhof, M., S. S. J. Leong, et al. (2005). 'Controlled oxidative protein refolding using an ion-exchange column.' Journal of Chromatography A 1069(2): 195-201. Lenton, K. J., H. Therriault, et al. (1999). 'Analysis of glutathione and glutathione disulfide in whole cells and mitochondria by postcolumn derivatization high-performance liquid chromatography with ortho-phthalaldehyde.' Analytical Biochemistry 274(1): 125-130. Li, M., G. F. Zhang, et al. (2002). 'Dual gradient ion-exchange chromatography improved refolding yield of lysozyme.' Journal of Chromatography A 959(1-2): 113-120. Maeda, Y., H. Koga, et al. (1995). 'Effective renaturation of reduced lysozyme by gentle removal of urea.' Protein Engineering 8(2): 201-205. Matsubara, M., D. Nohara, et al. (1993). 'Loose folding and delayed oxidation procedures successfully applied for refolding of fully reduced hen egg-white lysozyme.' Chemical & Pharmaceutical Bulletin 41(7): 1207-1210. Meyer, A. J., M. J. May, et al. (2001). 'Quantitative in vivo measurement of glutathione in Arabidopsis cells.' Plant Journal 27(1): 67-78. Moraitakis, G. and J. M. Goodfellow (2003). 'Simulations of human lysozyme: Probing the conformations triggering amyloidosis.' Biophysical Journal 84(4): 2149-2158. Navarro, J., E. Obrador, et al. (1999). 'Changes in glutathione status and the antioxidant system in blood and in cancer cells associate with tumour growth in vivo.' Free Radical Biology and Medicine 26(3-4): 410-418. Nohara, D., M. Matsubara, et al. (1996). 'Design of optimum refolding solution by combination of reagents classified by specific function.' Journal of Fermentation and Bioengineering 82(4): 401-403. Proctor, V. A. and F. E. Cunningham (1988). 'The Chemistry of Lysozyme and Its Use as a Food Preservative and a Pharmaceutical.' Crc Critical Reviews in Food Science and Nutrition 26(4): 359-395. Reed, D. J. and M. K. Savage (1995). 'Influence of metabolic-inhibitors on mitochondrial permeability transition and glutathione status ' Biochimica Et Biophysica Acta-Molecular Basis of Disease 1271(1): 43-50. Sakamoto, R., S. Nishikori, et al. (2004). 'High temperature increases the refolding yield of reduced lysozyme: Implication for the productive process for folding.' Biotechnology Progress 20(4): 1128-1133. Saxena, V. P. and Wetlaufe.Db (1970). 'Formation of 3-dimensional structure in proteins .1. rapid nonenzymic reactivation of reduced lysozyme.' Biochemistry 9(25): 5015-&. Sian, J., D. T. Dexter, et al. (1994). 'Glutathione-related enzymes in brain in parkinsons-disease.' Annals of Neurology 36(3): 356-361. Smith, N. C., M. Dunnett, et al. (1995). 'Simultaneous Quantitation of Oxidized and Reduced Glutathione in Equine Biological-Fluids by Reversed-Phase High-Performance Liquid-Chromatography Using Electrochemical Detection.' Journal of Chromatography B-Biomedical Applications 673(1): 35-41. St John, R. J., J. F. Carpenter, et al. (2002). 'High-pressure refolding of disulfide-cross-linked lysozyme aggregates: Thermodynamics and optimization.' Biotechnology Progress 18(3): 565-571. Stockel, J., K. Doring, et al. (1997). 'Pathway of detergent-mediated and peptide ligand-mediated refolding of heterodimeric class II major histocompatibility complex (MHC) molecules.' European Journal of Biochemistry 248(3): 684-691. Sun, Y. and L. W. Oberley (1996). 'Redox regulation of transcriptional activators.' Free Radical Biology and Medicine 21(3): 335-348. Terashima, P., K. Suzuki, et al. (1996). 'Effective refolding of fully reduced lysozyme with a flow-type reactor.' Process Biochemistry 31(4): 341-345. Winterbourn, C. C. and D. Metodiewa (1994). 'The reaction of superoxide with reduced glutathione.' Archives of Biochemistry and Biophysics 314(2): 284-290. 高敏展 (2002). '週期饋料復性法對溶菌酶復性行為之研究.' 台灣大學碩士論文. 張哲魁 (2001). '饋料式與間歇式復性法對溶菌酶復性行為之研究.' 台灣大學碩士論文. 廖慧媚 (2003). '復性緩衝液中氧化還原反應對溶菌酶復性之研究.' 台灣大學碩士論文. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28546 | - |
| dc.description.abstract | 無論在工業上或學術研究上,對於蛋白質復性程序中,如何在高濃度蛋白質下,提高復性產率為主要課題。直接稀釋法為最簡便之復性方法,而藉由氧化還原對濃度的改變、添加劑的加入以及物理方法上的應用皆有效的提升蛋白質復性效果。
本研究針對復性緩衝液中還原態穀胱甘肽(reduced glutathione,GSH)濃度變化作分析,探討不同操作條件下所造成的影響,最後將所得濃度變化以動力學分析,期望得到一合適之反應方程式。同時將復性緩衝液隨時間放置,測量其對活性回收率之影響,討論氧化還原對(GSH/GSSG)濃度及比例在復性程序中的效果。我們使用高效能液相層析儀 (HPLC)將GSH濃度變化作分析,結果顯示在高溫環境下(50℃∼90℃),GSH於反應後期均會產生副產物,而在低溫環境下(20℃∼40℃),GSH則隨時間氧化成GSSG。利用動力學分析不添加EDTA時,GSH氧化速率為一0.5級反應;而添加EDTA則有效的延遲其氧化速率,為一1 級反應。在溶菌酶復性過程中,復性緩衝液隨時間放置,由於GSH氧化形成GSSG,復性效果亦隨時間增加。將GSSG濃度變化對活性回收率做圖以及GSSG/GSH比例對活性回收率做圖比較下可發現,GSSG濃度與活性回收率之間有正相關;而GSSG/GSH並非影響復性效果之絕對因素。且在GSSG濃度達1.2mM 以上時,有最好的活性回收率。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-13T00:11:41Z (GMT). No. of bitstreams: 1 ntu-96-R94524084-1.pdf: 3982922 bytes, checksum: 7ab919a1674ec85e39eff8cfe7f3a0af (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 中文摘要......................................................................I
英文摘要.....................................................................II 目錄.........................................................................IV 圖目錄.......................................................................VI 表目錄.......................................................................XI 第一章 緒論..................................................................1 第二章 文獻回顧..............................................................3 2-1-1 溶菌酶 (Lysozyme)介紹..................................................3 2-1-2 溶菌酶之活性測定.......................................................6 2-2 蛋白質之變性.............................................................7 2-2-1 蛋白質結構與穩定蛋白質分子之作用力.....................................7 2-2-2 各種蛋白質變性方法.....................................................8 2-2-3 各種常見的變性劑.......................................................9 2-3 蛋白質之復性............................................................11 2-3-1 移除變性劑............................................................13 2-3-2 降低變性劑濃度........................................................16 2-4 穀胱甘肽(glutathione)介紹...............................................27 2-4-1 穀胱甘肽(glutathione)簡介.............................................27 2-4-2 穀胱甘肽之合成(biosynthesis)及分解(degradation) ......................29 2-4-3 穀胱甘肽的功能........................................................31 2-4-4 穀胱甘肽測量方法......................................................33 第三章 研究目的.............................................................36 第四章 實驗裝置、藥品與步驟.................................................37 4-1 實驗裝置.................................................................37 4-2 實驗藥品.................................................................38 4-3 實驗步驟.................................................................39 4-3-1 以HPLC測試還原態榖胱甘肽(GSH)及氧化態榖胱甘肽(GSSG) ...................39 4-3-2 以HPLC分析復性緩衝液成分濃度變化.......................................39 4-3-3 溶菌酶之變性...........................................................42 4-3-4 溶菌酶之活性測定.......................................................42 4-3-5 溶菌酶之直接稀釋法復性.................................................43 第五章 結果與討論...........................................................44 5-1 以高效能液相層析儀(HPLC)分析復性劑之變化.................................44 5-1-1 復性緩衝液層析圖形.....................................................44 5-1-2 還原態榖胱甘肽(GSH)隨時間放置之變化...................................45 5-1-3 環境溫度對復性緩衝液之影響............................................46 5-1-4 還原態榖胱甘肽(GSH)隨時間放置之濃度變化................................48 5-2 不同操作條件下對復性緩衝液成分濃度變化之影響.............................54 5-2-1還原態榖胱甘肽(GSH)起始濃度及環境溫度之影響.............................54 5-2-2 金屬螯合劑(EDTA)之影響.................................................61 5-2-3氧化態榖胱甘肽(GSSG)對氧化速率之影響....................................68 5-3還原態榖胱甘肽(GSH)氧化速率之動力學分析...................................72 5-3-1 不添加EDTA復性緩衝液之動力學分析.......................................72 5-3-2 添加EDTA復性緩衝液之動力學分析.........................................76 5-4 復性緩衝液放置時間對復性效果之影響.......................................80 5-5 尿素對復性緩衝液之影響...................................................88 第六章 結論與建議............................................................91 參考文獻.....................................................................94 | |
| dc.language.iso | zh-TW | |
| dc.subject | 復性緩衝液 | zh_TW |
| dc.subject | 溶菌酶 | zh_TW |
| dc.subject | 穀胱甘肽 | zh_TW |
| dc.subject | 直接稀釋法 | zh_TW |
| dc.subject | lysozyme | en |
| dc.subject | refolding buffer | en |
| dc.subject | direct dilution | en |
| dc.subject | glutathione | en |
| dc.title | 復性緩衝液中氧化還原對之變化及其對溶菌酶復性效果之影響 | zh_TW |
| dc.title | The Change and Refolding Efficiency of Lysozyme of Redox Pair in Refolding Buffer | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉懷勝(Hwai-Shen Liu),侯劭毅,王昱麒 | |
| dc.subject.keyword | 直接稀釋法,復性緩衝液,穀胱甘肽,溶菌酶, | zh_TW |
| dc.subject.keyword | direct dilution,refolding buffer,glutathione,lysozyme, | en |
| dc.relation.page | 97 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-30 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 3.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
