Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28545
Title: 有限正交群的不變多項式
Polynomial Invariants of Orthogonal Groups of Finite
Characteristics
Authors: Hsiang-Chun Hsu
徐祥峻
Advisor: 朱樺
Keyword: 模正交群,不變多項式,完全交,
modular orthogonal group,polynomial invariants,complete intersection,
Publication Year : 2007
Degree: 碩士
Abstract: 令 $Bbb F_q$ 是有 $q$ 個元素的 Galois 體, $Q_n$ 是 $Bbb F_q^n$ 上的非退化二次型且 $O_n(Bbb F_q)$ 是由 $Q_n$
定義的正交群。 令 $O_n(Bbb F_q)$ 線性地作用於多項式環 $Bbb F_q[x_1,x_2,dots,x_n]$ 上。 在本論文中, 我們將確切地
找出 $O_n(Bbb F_q)$ 的不變子環的生成元及其關係, 並且證明此不變子環是唯一分解環及完全交。
Let $Bbb F_q$ be the Galois field with $q$ elements, $Q_n$ a non-degenerated quadratic form on $Bbb F_q^n$, and
$O_n(Bbb F_q)$ the orthogonal group defined by $Q_n$. Let $O_n(Bbb F_q)$ act linearly on the polynomial ring
$Bbb F_q[x_1,x_2,dots,x_n]$. In this paper, we will find explicit generators and relations for the ring of
invariants of $O_n(Bbb F_q)$, and prove that it is a UFD and a complete intersection.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28545
Fulltext Rights: 有償授權
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-96-1.pdf
  Restricted Access
463.93 kBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved