Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28319
Title: 低階多項式自然語言處理之資料映射同時利用雜湊達成特
徵空間壓縮
Low-degree Polynomial Mapping of NLP Data and
Features Condensing by Hashing
Authors: Po-Han Chung
鐘博瀚
Advisor: 林智仁
Keyword: 自然語言處理,支持向量機,多項式映射,
Natural language processing,Support vector machine,Polynomial mapping,
Publication Year : 2011
Degree: 碩士
Abstract: Recently, many people handle natural language processing (NLP) tasks via support vector machines (SVM) with polynomial kernels. However, kernel computation is time consuming. Chang et al. (2010) have proposed mapping data by low-degree polynomial functions and applying fast linear-SVM methods. For data with many features, they have considered condensing data to effectively solve some memory and computational difficulties. In this thesis, we investigate Chang et al.'s methods and give implementation details. We conduct experiments on four NLP tasks to show the viability of our implementation.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28319
Fulltext Rights: 有償授權
Appears in Collections:資訊網路與多媒體研究所

Files in This Item:
File SizeFormat 
ntu-100-1.pdf
  Restricted Access
2.23 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved