請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27706
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 朱錦洲,張建成 | |
dc.contributor.author | Chi-Feng Chiu | en |
dc.contributor.author | 邱繼鋒 | zh_TW |
dc.date.accessioned | 2021-06-12T18:16:29Z | - |
dc.date.available | 2007-09-03 | |
dc.date.copyright | 2007-09-03 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-08-30 | |
dc.identifier.citation | [1] N. T. Nguyen and S. T. Wereley, ‘Fundamentals And Applications of Microfluidics 2nd ed’, ARTECH HOUSE, 2006
[2] J. C. T. Eijkel and Albert van den Berg, ‘Young 4ever-the use of capillarity for passive flow handling in lab on a chip devices’,Lab Chip,2006,6,1405-1408 [3] D. S. Kim, S. H. Lee, C. H. Ahn, J. Y. Lee, and T. H. Kwon, ‘Disposable integrated microfluidic biochip for blood typing by plastic microinjection moulding’, Lab chip, 2006, 6, 794-802 [4] N. T. Nguyen, X. Huang, and T. K. Chuan, ‘MEMS-Micropumps: A Review’ , J.Fluids Eng., 2002,124,384-392 [5] M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, ‘Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography’, Science, 2000,288,113-116 [6] H. Anderssona, W. van der Wijngaarta, P. Nilssonb, P. Enokssona, and G. Stemme, ‘A valve-less diffuser micropump for microfluidic analytical systems’ , Sens. Actuators, 2001,B 72,259-265 [7] K. S. Ryu, K. Shaikh, E. Goluch, Z. Fan and C. Liu, ‘Micro magnetic stir-bar mixer integrated with parylene microfluidic channels’, Lab Chip, 2004,4,608-613 [8] H. Moon and S. K. Cho, ‘Low voltage electrowetting-on-dielectric’, J. Appl. Phys., 2002, 92,4080-4087 [9] X Geng, H Yuan, H N Oguz, and A. Prosperetti, ‘Bubble-based micropump for electrically conducting liquids’, J. Micromech. Microeng., 2001, 11,270-276 [10] S. Bouaidat, O. Hansen, H. Bruus, C. Berendsen, N. K. B. Madsen, P. Thomsen, A. Wolff, and J. Jonsmann, ‘Surface-directed capillary system; theory, experiments and applications’, Lab Chip, 2005, 5, 827-836 [11] C. F. Chen, C. F. Kung, H. C. Chen, C. C. Chu, C. C. Chang,and F. G. Tseng, ‘A microfluidic nanoliter mixer with optimized grooved structures driven by capillary pumping’, J. Micromech. Microeng., 2006, 16, 1358-1365 [12] C. Pozrikidis, ‘Modeling And Simulation of Cpasules And Biological cells’, Chapman &Hall/CRC,2003 [13] S. Chakraborty, ‘Dynamics of capillary flow of blood into a microchannel’, Lab Chip, 2005, 5, 421-430 [14] S. D. Gruttola, K. Boomsma, D. Poulikakos, and Y. Ventikos, ‘Computational Simulation of the Blood Separation Process’, Artif Organs, 2005, 29, 8,665-674 [15] S. D. Gruttola, K. Boomsma,and D. Poulikakos, ‘Computational Simulation of a Non-Newtonian Model of the Blood Separation Process’, 2005,29, 12, 949-959 [16] H. J. Butt, K. Graf, and M. Kappl, ‘Physics and Chemistry of Interfaces’, Wiley, 2003 [17] M. M. Wintrobe 1999. Wintrobe’s Clinical Hematology, ed. EG Richard Lee, J Foerster, J Lukens, F Paraskevas, JP Greer, GM Rodgers, MM Wintrobe. Philadelphia: Lippincott Williams & Wilkins.10th ed. [18] M. Toner and D. Irimia, ‘BLOOD-ON-A-CHIP’, Annu. Rev. Biomed. Eng., 2005, 7, 77–103 [19] D. E. Brook, J. W. Goodwin, and G. V. F.Seaman, ‘Interacting among erythrocytes under shear’, J. Appl. Physiol., 1970, 28, 172-177 [20] F. E. H. Tay, C. Iliescu, J. Jing, and J. Miao, ‘Defect-free wet etching through pyrex glass using Cr/Au mask’, Microsyst Technol, 2006, 12,935-939 [21] C. Iliescua, J. Jingb, F. E.H. Taya, J. Miaoc, T. Sun, ‘Characterization of masking layers for deep wet etching of glass in an improved HF/HCl solution’, Surf. Coat. Technol., 2005, 198, 314-318 [22] T. H. Chen, Y. J. Chuang, C. C. Chieng, and F. G. Tseng, ‘A wettability switchable surface by microscale surface morphology change’, J. Micromech. Microeng., 2007, 17, 489–495 [23] N. J. Shirtcliffe, S. Aqil, C. Evans, G. McHale, M. I. Newton, C. C. Perry, and P. Roach, ‘The use of high aspect ratio photoresist (SU-8) for super-hydrophobic pattern prototyping’,J. Micromech. Microeng. 14 (2004) 1384–1389 [24] M. Yamanaka, K. Sada, M. Miyata, K. Hanabusad and K. Nakano,‘Construction of superhydrophobic surfaces by fibrous aggregation of perfluoroalkyl chain-containing organogelators’, Chem. Commun., 2006, 2248–2250 [25] I. S. Woodward, W. C. E. Schofield, V. Roucoules, T. J. Bradley, and J. P. S. Badyal, ‘Micropatterning of Plasma Fluorinated Super-hydrophobic Surfaces’, Plasma Chem Plasma Process,2006, 26,507–516 [26] M. B. Olde Riekerink, J. G. A. Terlingen, G. H. M. Engbers, and J. Feijen, ‘Selective Etching of Semicrystalline Polymers: CF4 Gas Plasma Treatment of Poly(ethylene)’ ,Langmuir 1999, 15, 4847-4856 [27] Y. Liu, X. Chen and J. H. Xin,‘Super-hydrophobic surfaces from a simple coating method: a bionic nanoengineering approach’, Nanotechnology, 2006, 17, 3259–3263 [28] V. Parihar, R. Singh, R. Sharangpani, S. D. Russell, and C. A. Young,’ Effect of Vacuum Ultraviolet Radiation on the Gap Fill Properties of Teflon Amorphous Fluoropolymer Film Deposited by Direct Liquid Injection’, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 47, NO. 7, JULY 2000 [29] F. Walther, P. Davydovskaya, S. Zürcher, M. Kaiser, H. Herberg, A. M. Gigler, and R. W. Stark, ‘Stability of the hydrophilic behavior of oxygen plasma activated SU-8’, J. Micromech. Microeng., 2007,17,524-531 [30] C. H. Lin, G. B. Lee, Y. H. Lin, G. L. Chang, ‘A fast prototyping process for fabrication of microfluidic systems on soda-lime glass’, J. Micromech. Microeng., 2001, 11, 726–732 [31] 林炯熙編撰,‘台北榮民總醫院 血液成分使用準則’, 2003年七月 [32] 徐良瑋, ‘微流道中紅血球形變與流場分析’, 國立台灣大學碩士論文, 2005 [33] J. Seo, E. Ertekin, M. S. Pio and L. P. Lee, “Self-Assembly Templates by Selective Plasma Surface Modification of Micropatterned Photoresist” ,2002 IEEE MEMS Conf., 192-195 [34] 陳建甫, ‘表面張力致動式微液體混合器之研發’, 國立台灣大學碩士論文, 2002 [35] 宮春斐, ‘新型被動式微混合器之研發’, 國立台灣大學碩士論文, 2003 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27706 | - |
dc.description.abstract | 在微小尺度下,表面張力的影響將逐漸增大,因此利用材料的親疏水特性製作的流道,使流體在流道內僅依靠表面張力前進,是近年來微流道領域內被廣為討論的方法,而本研究即血液在表面張力驅動的微流道中進行分析,期望能夠在生醫檢測領域得到較為實際的應用,在本文中,由於血液可以分成血漿及血球,而血液的流動機制,是由於血漿受到表面張力的驅動而帶動血球前進,因此將探討血液在流道內的表現並作出分析。在實驗中,發現由於血球比重大於血漿比重,改變流動的傾斜角度,可以發現流動速度亦隨著流動角度改變而變化,因此亦提出了進一步的分析,證明改變角度即改變系統中之黏滯項,確實影響了流體流動之結果。 | zh_TW |
dc.description.abstract | In this article, surface tension driven blood flow in a microchannel with red blood cells (RBCs) aggregation resulting in the different viscosity by handling sloping condition has been studied. According to the non-homogeneous and non-Newtonian characteristics, the heavier RBCs are driven by surrounding lighter plasma with the effect of blood aggregation which is influenced by the ratio of gravity, viscosity and capillary force in a surface tension driven blood flow system. However, the capillary force and viscosity have been decided in fabrication process. By changing the slope, we found the gravity made a great impact on hematocrit ( volume percentage of cells), thus, the viscosity was changed. | en |
dc.description.provenance | Made available in DSpace on 2021-06-12T18:16:29Z (GMT). No. of bitstreams: 1 ntu-96-R94543063-1.pdf: 4216473 bytes, checksum: 9f0a8e8a12e2a5a78e5ef238ef8ea16f (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 第一章 緒論 1
1.1微機電系統 1 1.2生醫晶片 1 1.3研究動機 2 1.4文獻回顧 2 1.4.1具外力流體驅動之回顧 2 1.4.2無外力驅動方式之回顧 4 1.4.3血液之理論及應用於生物晶片之回顧 4 1.5 章節概述 5 第二章 理論基礎與分析 7 2.1表面張力 7 2.2親水性與疏水性 9 2.2.1接觸角判斷親水性與疏水性 9 2.2.2 Young’s 方程式 10 2.2.3材料的親水性與疏水性 10 2.3血液特性 11 2.3.1血液之流動參數 11 2.3.2紅血球之錢幣狀堆積 12 2.3.3血液流動於表面張力微流道之理論計算 12 第三章 流道設計及材料 16 3.1流道結構設計 16 3.2光照設定 16 3.3材料選擇 17 3.3.1基底材料 17 3.3.2疏水材料 17 3.3.3親水材料 18 3.3.4蝕刻阻擋層材料 18 3.3.5剝離法Lift-off之製程材料 18 第四章 實驗設計及製程 19 4.1實驗設計 19 4.2實驗設備 19 4.2.1光學顯微鏡 19 4.2.2可變角度之平台 19 4.2.3接觸角量測儀 19 4.2.4微注射幫浦 20 4.2.5實驗架設之周邊 20 4.3量測數據處理 20 4.4實驗血液 21 4.5製程步驟 21 第五章 研究結果與討論 24 5.1製程之結果與討論 24 5.2血液實驗 25 5.2.1血液之討論 25 5.2.2具有彎道之流道設計 25 5.2.3直線流道設計 26 5.3理論值與實驗值之比較 27 5.4分析與討論 28 第六章 結論 29 6.1結論 29 6.2未來展望 29 第七章 參考文獻 30 | |
dc.language.iso | zh-TW | |
dc.title | 血液在表面張力驅動微流道內之分析 | zh_TW |
dc.title | The Surface Tension Driven Blood Flow in Micro-channels | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 郭志禹,陸鵬舉,崔博翔 | |
dc.subject.keyword | 表面張力,微流道,血液, | zh_TW |
dc.subject.keyword | surface tension,microchannel,blood flow, | en |
dc.relation.page | 74 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-08-30 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 4.12 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。