Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26354Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 林文貞 | |
| dc.contributor.author | Wei-Zhe Sun | en |
| dc.contributor.author | 孫偉哲 | zh_TW |
| dc.date.accessioned | 2021-06-08T07:07:21Z | - |
| dc.date.copyright | 2008-09-11 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-08-14 | |
| dc.identifier.citation | Abu-Izza K.A., Garcia-Contreras L., LU D.R. Preparation and evaluation of sustained release AZT-loaded microspheres : optimization of the release characteristics using response surface methodology. Journal of Pharmaceutical Sciences. 85(2):144-149, 1996.
Atkins T.W., Peacock S.J., Yates D.J. Incorporation and release of vancomycin from Poly(D, L-lactide-co-glycolide) microspheres. Journal of Microencapsulation. 15(1):31-44, 1998. Baldi F, Malfertheiner P. Lansoprazole fast disintegrating tablet: a new formulation for an established proton pump inhibitor. Digestion. 67(1-2):1-5, 2003. Barradell LB, Faulds D, McTavish D. Lansoprazole. A review of its pharmacodynamic and pharmacokinetic properties and its therapeutic efficacy in acid-related disorders. Drugs. 44(2):225-250, 1992. Beck LR, Cowsar DR, Lewis DH, Cosgrove RJ Jr, Riddle CT, Lowry SL, Epperly T. A new long-acting injectable microcapsule system for the administration of progesterone. Fertility and Sterility. 31(5):545-551, 1979. Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. European Journal of Pharmaceutical Sciences. 13(2):123-33, 2001. Crotts G., Sheth A., Twist J., Ghebre-Sellassie I. Development of an enteric coating formulation and process for tablets primarily composed of a highly water-soluble, organic acid. European Journal of Pharmaceutics and Biopharmaceutics. 51:71-76, 2001 Debunne A., Vervaet C., Remon J.P. Development and in vitro evaluation of an enteric-coated multiparticulate drug delivery system for the administration of piroxicam to dogs. European Journal of Pharmaceutics and Biopharmaceutics. 54:343-348, 2002 DellaGreca M, Iesce MR, Previtera L, Rubino M, Temussi F, Brigante M. Degradation of lansoprazole and omeprazole in the aquatic environment. Chemosphere. 63(7):1087-93, 2006 Dubernet C., Rouland JC., Benoit JP. Ibuprofen-loaded ethylcellulose microspheres: analysis of the matrix structure by thermal analysis. Journal of Pharmaceutical Sciences. 80(11):1029-33, 1991. Edlund U., Albertsson A.C. Degradable polymer microspheres for controlled drug delivery. Advances in Polymer Science. 157:68-112, 2002 Ekpe A, Jacobsen T. Effect of various salts on the stability of lansoprazole, omeprazole, and pantoprazole as determined by high-performance liquid chromatography. Drug Development & Industrial Pharmacy. 25(9):1057-1065, 1999 Elhassan Imam M. Bernkop-Schnurch A. Controlled drug delivery systems based on thiolated chitosan microspheres. Drug Development & Industrial Pharmacy. 31(6):557-65, 2005 Fan L.T., Singh S.K. In:Controlled release: a quantitative treatment. springer-Verlag, Berlin, pp.9-161, 1989. Fassihi AR, Munday DL. Dissolution of theophylline from film-coated slow release mini-tablets in various dissolution media. Journal of Pharmacy and Pharmacology. 41:369-372, 1989. Freitas S, Merkle HP, Gander B. Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. Journal of Controlled Release. 102(2):313-332, 2005. Gan Y, Pan W, Wei M, Zhang R. Cyclodextrin complex osmotic tablet for glipizide delivery. Drug Development and Industrial Pharmacy. 28(8):1015-1021, 2002. Haznedar S. Dortunc B. Preparation and in vitro evaluation of Eudragit microspheres containing acetazolamide. International Journal of Pharmaceutics. 269(1):131-40, 2004. Higuchi, T., Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. Journal of Pharmaceutical Sciences. 52:1145–1149, 1963. Hombreiro-Perez M., Siepmann J., Zinutti C., Lamprecht A., Ubrich N., Hoffman M., Bodmeier R., Maincent P. Non-degradable microparticles containing a hydrophilic and/or a lipophilic drug: preparation, characterization and drug release modeling. Journal of Controlled Release. 88:413–428, 2003 Horoz BB, Kilicarslan M, Yuksel N, Baykara T. Effect of different dispersing agents on the characteristics of Eudragit microspheres prepared by a solvent evaporation method. Journal of Microencapsulation. 21(2):191-202, 2004. Ito Y., Arai H., Uchino K., Iwasaki K., Shibata N., and Takada K. Effect of adsorbents on the absorption of lansoprazole with surfactant. International Journal of Pharmaceutics. 289(1-2):69-77, 2005. Jovanovic I. Jordovic B. Petkovic M. Ignjatovic N. Uskokovic D. Preparation of smallest microparticles of poly-D,L-lactide by modified precipitation method: influence of the process parameters. Microscopy Research & Technique. 71(2):86-92, 2008. Khan MZI., Stedul H.P., Kurjakovic N. A pH-dependent colon targeted oral drug delivery system using methacrylic acid co-polymers. II. Manipulation of drug release using Eudragit L100 and Eudragit S100 combinations. Drug Development and Industrial Pharmacy. 26(5):549-554, 2000. Kilicarslan M., Baykara T. Effects of the permeability characteristics of different polymethacrylates on the pharmaceutical characteristics of verapamil hyhdrochloride-loaded microspheres. Journal of Microencapsulation. 21(2):175-189, 2004. Krishnamachari Y., Madan P., and Lin S. Development of pH- and time-dependent oral microparticles to optimize budesonide delivery to ileum and colon. International Journal of Pharmaceutics. 338(1-2):238-47, 2007. Kristl A, Vrecer F. Preformulation investigation of the novel proton pump inhibitor lansoprazole. Drug Development and Industrial Pharmacy. 26(7):781-783, 2000. Kristmundsdottir T., Gudmundsson O.S., Ingvarsdottir, K. Release of diltiazem from Eudragit microparticles prepared by spray-drying. International Journal of Pharmaceutics. 137:159–165, 1996. Lamprecht A. Yamamoto H. Takeuchi H. Kawashima Y. Microsphere design for the colonic delivery of 5-fluorouracil. Journal of Controlled Release. 90(3):313-22, 2003. Labenz J, Peitz U, Leusing C. Efficacy of primed infusions with high dose ranitidine and omeprazole to maintain high intragastric pH in patients with peptic ulcer bleeding: a prospective randomised controlled study. Gut. 40:36–41, 1997. Lee WK. Park JY. Yang EH. Suh H. Kim SH. Chung DS. Choi K. Yang CW. Park JS. Investigation of the factors influencing the release rates of cyclosporin A-loaded micro- and nanoparticles prepared by high-pressure homogenizer. Journal of Controlled Release. 84(3):115-23, 2002. McGinity J.W. In:Aqueous polymeric coatings for pharmaceutical dosage forms. 2nd ed. Marcel Dekker Inc., New York, pp:101-176, 1997. Makhija SN, Vavia PR. Once daily sustained release tablets of venlafaxine, a novel antidepressant. European Journal of Pharmaceutics and Biopharmaceutics. 54:9-15, 2002. Makhija SN, Vavia PR. Controlled porosity osmotic pump-based controlled release systems of pseudoephedrine. I. Cellulose acetate as a semipermeable membrane. Journal of Controlled Release. 89:5-8, 2003. Maria-Ines Re. Formulating Drug Delivery Systems by Spray Drying. Drying technology. 24(4):433-446, 2006. Ming-Guang Li., Wan-Liang Lu., Jian-Cheng Wang., Xuan Zhang., Hua Zhang., Xue-Qing Wang., Cui-Shuan Wu., Qiang Zhang., Preparation and characterization of insulin nanoparticles employing chitosan and poly(methylmethacrylate/methylmethacrylic acid) copolymer. Journal of Nanoscience & Nanotechnology. 6(9-10):2874-86, 2006. Mehta K.A., Kislalioglu M.S., Phuapradit W., Malick A.W., Shah N.H. Release performance of a poorly soluble drug from a novel, Eudragit-based multi-unit erosion matrix. International Journal of Pharmaceutics. 213:7–12, 2001. Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM. Nano/micro technologies for delivering macromolecular therapeutics using poly(D,L-lactide-co-glycolide) and its derivatives. Journal of Controlled Release. 125(3):193-209,2008. Musko Z, Pintye-Hodi K, Gaspar R, Pintye J, Szabo-Revesz P, Eros I, Falkay G. Study of in vitro and in vivo dissolution of theophylline from film-coated pellets. European Journal of Pharmaceutics and Biopharmaceutics. 95:239-248, 2004. Okimoto K, Rajewski RA, Stella VJ. Release of testosterone from an osmotic pump tablet utilizing (SBE)7m-beta-cyclodextrin as both a solubilizing and an osmotic pump agent. Journal of Controlled Release. 58:29-38, 1999. Olbe L, Carlsson E, Lindberg P. A proton-pump inhibitor expedition: the case histories of omeprazole and esomeprazole. Nature Reviews Drug Discovery. 2(2):132-9, 2003 Ozdemir N., Sahin J. Design of a controlled release osmotic pump system of ibuprofen. International Journal of Pharmaceutics. 158(1):91-97,1997 Paolo C., Ruggero B., Patrizia S., and Nikolaos A.P. Swellable matrices for controlled drug delivery: gel-layer behaviour, mechanisms and optimal performance. Pharmaceutical science & Technology today. 3(6):198-204, 2000. Pais S.A., Nathwani RA, Dhar V, Nowain A, Laine L. Effect of frequent dosing of an oral proton pump inhibitor on intragastric pH. Alimentary Pharmacology & Therapeutics. 23(11):1607-1613, 2006. Peng D, Huang K, Liu Y, Liu S. Preparation of novel polymeric microspheres for controlled release of finasteride. International Journal of Pharmaceutics. 342(1-2):82-6, 2007 PDR, Physicians’ desk reference, 61st , Medical Economics Co., pp3271-3280, 2007. Rackur G, Bickel M, Fehlhaber HW, Herling A, Hitzel V, Lang HJ, Rosner M, Weyer R. 2-((2-Pyridylmethyl)sulfinyl)benzimidazoles: acid sensitive suicide inhibitors of the proton transport system in the parietal cell. Biochemical and Biophysical Research Communications. 128(1):477-84, 1985. Razaghi AM, Schwartz JB. Release of cyclobenzaprine hydrochloride from osmotically rupturable tablets. Drug Development and Industrial Pharmacy. 28(6):295-701, 2002. Reddy KR., Mutalik S., Reddy S. Once-daily sustained-release matrix tablets of nicorandil: formulation and in vitro evaluation. AAPS PharmSciTech. 4(4):E61, 2003. Rodriguez M, Vila-Jato JL, Torres D. Design of a new multiparticulate system for potential site-specific and controlled drug delivery to the colonic region. Journal of Controlled Release. 55(1):67-77, 1998. Rosen S.L. In:Fundamental priciples of polymeric materials. John Wiley and Sons Ltd. 106, New York, 1993. Schalper K, Harnisch S, Muller RH, Hildebrand GE. Preparation of microparticles by micromixers: characterization of oil/water process and prediction of particle size. Pharmaceutical Research. 22(2):276-284, 2005. Simon Benita. In:Microencapsulation-Methods and Industrial Application. Marcel Dekker Inc., New York, pp:1-19, 35-72, 1996. Singh D., Saraf S., Dixit VK., Saraf S. Formulation optimization of gentamicin loaded Eudragit RS100 microspheres using factorial design study. Biological & Pharmaceutical Bulletin. 31(4):662-667, 2008. Sprockel O.L. and Prapaitrakul W. A comparison of microencapsulation by various emulsion techniques. International Journal of Pharmaceutics. 58:123-127, 1990. Squillante E., Morshed G., BagchiS., and Mehta K.A. Microencapsulation of β-galactosidase with Eudragit L-100. Journal of Microencapsulation. 20(2):153-167, 2003. Streubel A., Siepmann J., Bodmeier R. Multiple unit gastroretentive drug delivery systems: a new preparation method for low density microparticles. Journal of Microencapsulation. 20(3):329-347, 2003. Tabata T., Makino T., Kashihara T., Hirai S., Kitamori N., Toguchi H. Stabilization of a new antiulcer drug (lansoprazole) in the solid dosage forms. Drug Development and Industrial Pharmacy. 18(13):1437-1447, 1992 Uchida T., Yagi A.,Oda Y.,Goto S. Microencapsulation of ovalbumin in poly(lactide-co-glycolide) by an oil-in-oil (o/o) solvent evaporation method. Journal of Microencapsulation. 13(5):518-529, 1996 Wasfy M., Obeidat, James C. Preparation and evaluation of Eudragit S 100 microspheres as pH-sensitive release preparations for piroxicam and theophylline using the emulsion-solvent evaporation method. Journal of Microencapsulation. 23(2):195–202, 2006. Zhang H, Lu Y, Zhang G, Gao S, Sun D, Zhong Y. Bupivacaine-loaded biodegradable poly(lactic-co-glycolic) acid microspheres I. Optimization of the drug incorporation into the polymer matrix and modelling of drug release. International Journal of Pharmaceutics. 351(1-2):244-9, 2008. Zhu KJ. Li Y. Jiang HL. Yasuda H. Ichimaru A. Yamamoto K. Lecomte P. Jerome R. Preparation, characterization and in vitro release properties of ibuprofen-loaded microspheres based on polylactide, poly(epsilon-caprolactone) and their copolymers. Journal of Microencapsulation. 22(1):25-36, 2005. Zhang Y., Zhang Z., Wu F. A novel pulsed-release system based on swelling and osmotic pumping mechanism. Journal of Controlled Release. 89(1):47-55, 2003. 陳澤澎, 掃描穿透式電子顯微鏡, 科儀新知 3(2):31-36, 1981. 李宏冠,微孔性控釋型錠劑之特性及其藥物釋放之研究,台大藥學研究所,2003 許家豪,茶鹼微孔性控釋錠之劑型設計及其在家兔體內藥物動力學之研究,台大藥學研究所,2004 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26354 | - |
| dc.description.abstract | 蘭索拉唑是一種質子幫浦抑制劑(proton pump inhibitor),其作用可專一性的抑制H+/K+-ATPase,常用於治療消化性潰瘍的相關疾病。但由於本身的血中半衰期短,因此無法有效控制夜間酸突破現象(nocturnal acid breakthrough),本研究乃以緩釋微球之處方研究尋求改善。
本實驗利用油/水溶媒揮發法製作RS-100緩釋微球,並且針對三個影響緩釋微球的因子進行評估,即均質化速度、Eudragit® RS-100的濃度及Eudragit® RS-100/蘭索拉唑比例。接著使用水/油溶媒揮發法,對RS-100緩釋微球進行第二層腸溶性膜衣包覆,並且探討硬脂酸鎂的含量和Eudragit® L100-55/緩釋微粒的比例的影響。 實驗結果顯示,在RS-100緩釋微球方面,增加均質化速度會使平均粒徑、藥品包覆率和產率降低;增加Eudragit® RS-100的濃度可使平均粒徑、藥品包覆率、藥品含量及產率增加;Eudragit® RS-100/蘭索拉唑比例與藥品包覆率及產率呈正相關,對藥品含量則是10/10與10/5相等,而大於10/1。在SEM的觀察下可看出各組緩釋微球均具有良好的球狀外觀。藉由FT-IR與DSC測定可得知,蘭索拉唑是以非結晶態物理性包覆於Eudragit® RS-100。在體外溶離試驗中,可以知道當均質速度愈小或Eudragit® RS-100濃度愈高時,蘭索拉唑的釋離速度會下降;而Eudragit® RS-100/蘭索拉唑比例提高時,釋離速度會上升,但R2000-1010會大於R2000-1005。 在雙層包覆微球的實驗方面,添加硬脂酸鎂可使平均粒徑、產率提高,而不會對藥品包覆率及藥品含量造成影響;且經由SEM可得知,加入硬脂酸鎂亦會使雙層包覆微球表面變得粗糙。增加Eudragit® L100-55/緩釋微粒的比例時,平均粒徑會上升,藥品含量會下降,但不會影響產率及藥品包覆率的大小。在體外溶離試驗可得知,雙層包覆的過程中,部分蘭索拉唑從緩釋微粒中釋放出來,因此造成雙層包覆微球釋離速率上升及累積釋離量提高。 | zh_TW |
| dc.description.abstract | Lansoprazole is a proton pump inhibitor which selectively inhibits H+/K+-ATPase. It is usually used for gastric ulcer diseases. However, due to its short half life in plasma, lansoprazole cannot control nocturnal acid breakthrough. This study was aimed to improve this situation by preparing sustained-release lansoprazole microparticles.
In this study, the RS-100 sustained release microparticles were made by the oil/water solvent evaporation method. Three responses (homogenization rate, concentration of Eudragit®® RS-100 and Eudragit®® RS-100/lansoprazole ratio) that would affect the sustained release microparticles were further evaluated. By using the oil/water solvent method, the RS-100 sustained release micorparticles were covered with the second layer enteric coating. The content of the Mg stearate and the ratio of the Eudragit®® L100-55/RS-100 microparticles were also discussed. The result showed that increasing homogenization rate would decrease particle size, encapsulation efficiency and yield of RS-100 sustained release microparticles. Increasing concentration of Eudragit®® RS-100 would increase particle size, encapsulation efficiency, drug loading and yield. Increasing Eudragit®® RS-100/lansoprazole ratio would increase encapsulation efficiency and yield; for drug loading, the ratio 10/10 was equal to 10/5 and both larger than 10/1. The SEM micrographs showed the sustained release microparticles with good spherical shape. Based on FT-IR and DSC data, lansoprazole was physically wrapped by Eudragit®® RS-100 as non-crystal form. In vitro release showed that reduction of homogenization rate or increased in concentration of Eudragit®® RS-100, decreased release rate of lansoprazole. Increasing Eudragit®® RS-100/lansoprazole ratio would increase release rate, but R2000-1010 was faster than R2000-1005. In the study of enteric coated microparticles, adding Mg stearate would increase particle size and yield, but did not affect the encapsulation efficiency and drug loading; however, the surface of double coated microparticles became rough based on SEM micrographs. While increasing the ratio of Eudragit® L100-55/RS-100 microparticles, increased particle size and decreased drug loading, but did not affect the yield and encapsulation efficiency. According to in vitro release study, some lansoprazole was released from sustained release microparticles during the process of double coating, causing increase of release rate and cumulative release amount of drug from enteric coated microparticles. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T07:07:21Z (GMT). No. of bitstreams: 1 ntu-97-R95423019-1.pdf: 8085309 bytes, checksum: a1725ef3dc163c0d5f5f892e5470d3e0 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 中文摘要………………………………………i
英文摘要……………………iii 目錄………………………………………v 表目錄…………………………ix 圖目錄…………………………………………xi 第一章 序論………………………………………1 一、微膠囊簡介…………………………………………1 二、微膠囊的製備技術…………………………………3 三、藥物控釋系統……………………………11 四、腸溶性劑型簡介…………………………13 第二章 試劑與材料………………15 一、蘭索拉唑…………………………………15 二、Eudragit RS-100………………………23 三、Eudragit L100-55……………………………………………24 四、硬脂酸鎂………………………………25 第三章 實驗目的與目標………………………………27 第四章 實驗試劑與儀器…………………………………………29 一、試劑………………………………………29 二、儀器與耗材………………………………30 三、藥品溶液及緩衝液之配製…………………………………………32 第五章 實驗方法………………………………33 一、蘭索拉唑RS-100緩釋微球製備………………………33 (一)控制變因…………………………………………33 (二)製作方式…………………………………………33 二、蘭索拉唑雙層包覆微球製備………………………37 (一)控制變因…………………………………………37 (二)製作方式………………………………37 三、蘭索拉唑定量方法…………………………………………41 (一)高效能液相層析系統層析條件…………………………41 (二)同日內精密度、準確度試驗…………………………41 (三)異日間精密度、準確度試驗…………………41 四、含藥微球的物性…………………………………………42 (一)微球表面的型態……………………42 (二)粒徑分析…………………………………………43 (三)產率…………………………………………43 (四)藥品包覆率…………………………………………43 (五)藥物含量…………………………………………44 (六)傅立葉轉換紅外線光譜儀…………………………………………44 (七)示差掃描熱分析儀…………………………………………44 五、體外溶離試驗…………………………………………46 (一)溶離槽的裝置…………………………………………46 (二)溶離試驗數據的處理…………………………………………46 六、統計方法…………………………………………48 第六章 結果與討論……………………………49 一、精密度試驗結果………………………49 二、RS-100緩釋微球物性分析結果………………………54 (一)RS-100緩釋微球表面的型態………………………54 (二)粒徑分析………………………60 (三)產率………………………63 (四)藥品包覆率………………………65 (五)藥物含量………………………68 (六)傅立葉轉換紅外線光譜儀………………………71 (七)示差掃描熱分析儀………………………73 三、RS-100緩釋微粒體外溶離試驗………………………75 四、雙層包覆微球物性分析結果………………………81 (一)雙層包覆微球表面的型態………………………81 (二)粒徑分析………………………86 (三)產率………………………86 (四)藥品包覆率………………………86 (五)藥物含量………………………87 五、雙層包覆微粒體外溶離試驗………………………92 第七章 結論…………………………99 第八章 參考文獻………………101 | |
| dc.language.iso | zh-TW | |
| dc.subject | 持續釋放 | zh_TW |
| dc.subject | 蘭索拉唑 | zh_TW |
| dc.subject | 溶媒揮發法 | zh_TW |
| dc.subject | 微膠囊 | zh_TW |
| dc.subject | lansoprazole | en |
| dc.subject | sustained-release | en |
| dc.subject | microparticles | en |
| dc.subject | solvent evaporation method | en |
| dc.title | 利用溶媒揮發法製備蘭索拉唑微粒緩釋劑型之研究 | zh_TW |
| dc.title | Development of Lansoprazole Sustained-Release Microparticles Using Solvent Evaporation Method | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳瑞龍,陳錦龍,黃義侑 | |
| dc.subject.keyword | 蘭索拉唑,溶媒揮發法,微膠囊,持續釋放, | zh_TW |
| dc.subject.keyword | lansoprazole,solvent evaporation method,microparticles,sustained-release, | en |
| dc.relation.page | 109 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2008-08-14 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥學研究所 | zh_TW |
| Appears in Collections: | 藥學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-97-1.pdf Restricted Access | 7.9 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
