Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25983
Title: 一維函數之共軛性
Conjugacy of One Dimensional Maps
Authors: Dyi-Shing Ou
歐迪興
Advisor: 彭?堅(Ken Palmer)
Keyword: 動態系統,拓樸共軛,片段線性函數,數值計算,保測變換,
Dynamical Systems,Topological Conjugacy,Piecewise Linear Maps,Numerical Calculation,Measure Preserving Transformation,
Publication Year : 2009
Degree: 碩士
Abstract: 若一連續函數 f:[0,1]-&gt[0,1] ,存在一組分割 0=z_0&ltz_1&lt...&ltz_n=1 使 f(z_2i)=0 、 f(z_2i+1)=1 且 f 在 [z_i,z_i+1] 區間為單調函數,則稱 f 為 n-modal。Milnor 及 Thurston (1977) 最先給出了一個片段絕對單調函數至片段線性函數之 semi-conjugacy 的存在性。本篇論文為推廣 Fotiades, Boudourides (2001) 及 Banks, Dragan, Jones (2003) 的方法,建構 n-modal 函數到 tent map 之 semi-conjugacy ,並更進一步利用此方法證出 semi-conjugacy 的唯一性。此方法可用於數值計算 n-modal 映射之 semi-conjugacy ,並詳細估計出其收歛性。由於前述 Fotiades 及 Banks 等人只給了當 conjugacy 存在的結果,本文給出所構造出的 semi-conjugacy 為一對一映成函數之等價條件,這些條件驗證了 Parry (1966) 的結果。本文最後給了兩個應用:一個是研究 logistic map l_mu(x)=mu x(1-x) 之 invariant Cantor set 隨 mu&gt=4 變化之軌跡,另一個是可建構 n-modal map 之保測變換。
A continuous map f:[0,1]-&gt[0,1] is called an n-modal map if there is a partition P={0=z_0&ltz_1&lt...&ltz_n=1} such that f(z_2i)=0, f(z_2i+1)=1 and, f is monotone on each [z_i,z_i+1]. It was proved by Milnor and Thurston (1977) that there exists a topological semi-conjugacy from a piecewise strictly monotone map to a piecewise linear map. In this article, we give a method for constructing the topological semi-conjugacy numerically which extends the results from Fotiades, Boudourides (2001) and Banks, Dragan, Jones (2003). In addition, the uniqueness of the semi-conjugacy, is proved by this method. The convergence rate is discussed for the approximation method also. Moreover, in contrast to Fotiades and Banks who only consider condition which ensure the conjugacy map exists, here we state equivalent conditions for the semi-conjugacy to be exactly a bijection, which coincide with Parry's (1966) result. Finally, two applications are given. In one, we study the trajectory of the invariant Cantor set for the logistic map l_mu(x)=mu x(1-x) when the parameter mu&gt=4. In the other, we construct an invariant measure for an n-modal map.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25983
Fulltext Rights: 未授權
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-98-1.pdf
  Restricted Access
2.08 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved