請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2536完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉豐哲 | |
| dc.contributor.author | Wei-Han Lu | en |
| dc.contributor.author | 陸韋翰 | zh_TW |
| dc.date.accessioned | 2021-05-13T06:41:38Z | - |
| dc.date.available | 2017-07-13 | |
| dc.date.available | 2021-05-13T06:41:38Z | - |
| dc.date.copyright | 2017-07-13 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-06-16 | |
| dc.identifier.citation | {1} Agnew, R.P. and A.P. Morse, {it Extension of linear functionals, with application to limits, integrals, measures, and demsities}, An. Math. 39(1938) 20-30.
{2} Banach, S. {it Sur le problème de la mesure}, Fund. Math. 4(1923), 7-33. {3} ------, {it Théorie des opérations linéaires}, Warszawa, 1932, 27. {4} Day, M.M. {it Means on semigroups and groups}, Bull. Amer. Math. Soc. 55(1949), 1054. {5} ------, {it Amenable groups}, Bull. Amer. Math. Soc. 56(1950), 46. {6} ------, {it Amenable semigroups}, Illinois J. Math. 1(1957), 509-544. {7} Greenleaf, Frederick P. {it Invariant Means on Topological Groups}, New York University(1969). {8} Hahn, H. {it Über lineare Gleichungssysteme in linearen Räumen}, J. Reine. Angew. Math. 157(1927), 214-229. {9} Higgins, P.J. {it An Introduction to Topological Groups}, Cambridge University Press(1974). {10} Lax, Peter D. {it Functional Analysis}, Wiley Interscience, New York(2002). {11} Liu, F.C. {it Measure solutions of systems of ineqyalities}, Topol. Methods Nonlinear Anal. 2(1993), 317-331. {12} ------, {it Mazur-Orlicz equality}, Studia Math. 101(2008), 53-63. {13} ------, {it Real Analysis}, Oxford Graduate Texts in Mathematics No.26(2016). {14} Von Neumann, J. {it Zur allgemeinen Theorie des Masses}, Fund. Math. 13(1929), 73-116. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2536 | - |
| dc.description.abstract | 此論文研究一個可推得Hahn-Banach等相關定理的分離原理的等價定理。由此,我們為Agnew-Morse定理、交換群上的順從性、Haar integral的存在性提供自然簡潔的證明。可想像的是這個方法也能幫助分析上其他相關的結果。 | zh_TW |
| dc.description.abstract | This thesis studies an analytic variant of a well-known separation principle from which follows Hahn-Banach theorem and many basic theorems in convex analysis. By using this analytic variant, we provide natural and elegant proofs for Agnew-Morse Theorem, the amenability of abelian groups, and the existence of Haar integrals.
It is conceivable that the approach we suggest here might lead to clarification of some results in convex analysis. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-13T06:41:38Z (GMT). No. of bitstreams: 1 ntu-106-R04221022-1.pdf: 441476 bytes, checksum: 40c3062faca680055bf15ab18bc31e31 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 1. Introduction and preliminary definitions------------------1
2. The main theorem------------------------------------------4 3. Applications---------------------------------------------13 4. Miscellaneous remarks------------------------------------37 5. References-----------------------------------------------41 | |
| dc.language.iso | en | |
| dc.subject | 線性算子 | zh_TW |
| dc.subject | 泛涵 | zh_TW |
| dc.subject | 分離原理 | zh_TW |
| dc.subject | functional analysis | en |
| dc.subject | linear functional | en |
| dc.subject | separation principle | en |
| dc.title | 分離原理及其應用 | zh_TW |
| dc.title | A separation principle and its applications | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張志豪,陳俊全 | |
| dc.subject.keyword | 分離原理,泛涵,線性算子, | zh_TW |
| dc.subject.keyword | separation principle,functional analysis,linear functional, | en |
| dc.relation.page | 42 | |
| dc.identifier.doi | 10.6342/NTU201700955 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2017-06-16 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf | 431.13 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
