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摘要

此論文研究一個可推得 Hahn-Banach 等相關定理的分離原理的等價定理。

由此，我們為 Agnew-Morse 定理、交換群上的順從性、Haar integral 的存

在性提供自然簡潔的證明。可想像的是這個方法也能幫助分析上其他相關

的結果。
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Abstract

This thesis studies an analytic variant of a well-known separation principle

from which follows Hahn-Banach theorem and many basic theorems in convex

analysis. By using this analytic variant, we provide natural and elegant

proofs for Agnew-Morse Theorem, the amenability of abelian groups, and the

existence of Haar integrals. It is conceivable that the approach we suggest

here might lead to clarification of some results in convex analysis.
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1 Introduction and preliminary definitions

There is a well-known separation principle which states as follows(cf.[9, §III.3]).

Theorem 1. If E is a nonempty linearly open convex cone in a real v.s.

X such that Y ∩ E = ∅ where Y is a vector subspace of X, then there is a

hyperplane H in X s.t. Y ⊂ H and H ∩ E = ∅.

Theorem 1 is equivalent to the following Theorem 2(cf.[13, §5.4]), if we con-

sider the quotient space X/Y instead of X.

Theorem 2. If E is a nonempty linearly open convex cone in a real v.s. X

such that 0 /∈ E, then there is a hyperplane H in X s.t. H ∩ E = ∅.

Intuitively simple as Theorem 2 is, it is very useful in linear analysis. For

examples, the well-known minimax theorem of von Neumann, Hahn-Banach

theorem, and Mazur-Olicz’s generalization of Hahn-Banach theorem can be

derived from Theorem 2 without much effort as shown in [13, §5.4] and [12].

In this thesis, we aim to look more closely at Theorem 2 and derive an

analytic variant of Theorem 2(See Theorem 5 below) with applications to

Agnew-Morse theorem and to the existence of Haar integrals.

Throughout the thesis, all vector spaces considered are real vector spaces.

Let X be a vector space. A subset E of X is said to be convex if αx+βy ∈ E

whenever x and y are in E and α and β are nonnegative numbers with

1



doi:10.6342/NTU201700955

α + β = 1. E is called a convex cone if it is convex and γE ⊂ E for all

γ > 0. For a set S ⊂ X, the smallest convex cone containing S denotes

Con S.

A set E ⊂ X is said to be linearly open if for any x ∈ E and y ∈ X,

x+ ty ∈ E if |t| is small enough; in other words, the intersection of any line

in X with E is an open subset of the line. Note that if a linearly open convex

cone containing the origin 0, then E = X.

For convenience, the fact that a real-valued function f assumes value

≥ α on a set A will be expressed by f(A) ≥ α; the meaning of each of the

expression f(A) > α, f(A) ≤ α, and f(A) < α is parallelly given. Moreover,

for subsets A, B of vector space X, the subset {a+ b| a ∈ A and b ∈ B} and

{−a| a ∈ A} denote A+B and −A respectively. The set of all positive real

numbers, {r ∈ R : r > 0}, is denoted by R+.

We adopt the usual terminology of linear algebra; in particular, X ′ will

denote the algebraic dual of a vector space X, i.e. X ′ is the space of all

linear functional on X. A real-valued function p on X is called a sublinear

functional if p(x + y) ≤ p(x) + p(y) for x, y in X and if p(αx) = αp(x) for

α > 0 and x ∈ X. For convenience, given a sublinear functional p on X,

X ′(p) denotes the set of all linear functionals ℓ in X ′ such that ℓ ≤ p on X.

From the definition of a sublinear functional p, p(0) = 0 and the following

2
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inequalities hold

p(Σm
k=1xk) ≤ Σm

k=1p(xk); (1)

p(y + x) ≥ p(y)− p(−x). (2)

For a given sublinear functional p on X, the set Q = {x ∈ X : p(x) < 0} is

a linearly open cone in X. Q is refered to as negative cone of p. Note that

Q might be empty.

3
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2 The main theorem

In this section, we give a proof of Theorem 2, together with some applications

when the concerned convex cone E is the negative cone of a sublinear func-

tional. For the proof of Theorem 2, we first give a criterion of hyperplanes.

Proposition 1. Let X be a vector space and H a vector subspace of X. H is

a hyperplane if and only if there is a linearly open convex cone D such that

D ∪H ∪ (−D) = X is a disjoint union.

Proof. Assume that H is a hyperplane. Choose x /∈ H. Put D = {rx + h :

r > 0, h ∈ H}. It is easy to see that D is a convex cone and −D =

{−rx + h : r > 0, h ∈ H}. Also D ∩ (−D) = ∅, H ∩ (−D) = ∅, and

D ∩H = ∅. Since H is a hyperplane, < x > +H = X. Thus, < x > +H =

(R+x+H)∪H∪ (−R+x+H) = D∪H∪ (−D) = X. It suffices to check that

D is linearly open. For z ∈ D, and y ∈ X, there are r1 > 0, r2 in R and h1, h2

in H such that z = r1x + h1 and y = r2x + h2. If r2 = 0, then z + ty ∈ D

for all t. Otherwise, let |t| ≤ |r1|
2|r2| , then z + ty = (r1 + tr2)x+ (h1 + th2) ∈ D

since r1 + tr2 > 0.

Assume now that there is a linearly open convex cone D such that D ∪

H ∪ (−D) = X is a disjoint union. For any x /∈ H, we claim < x >

+H = X. WLOG, we let x ∈ D. For y ∈ −D, consider the line segment

[x, y] := {αx + βy : α ≥ 0, β ≥ 0, α + β = 1}, which is a connected set in

4
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the line L passing through x and y. D ∩ [x, y] and (−D) ∩ [x, y] are disjoint

open sets in [x, y] containing x and y respectively. Since [x, y] is connected,

[x, y] ) (D ∩ [x, y]) ∪ ((−D) ∩ [x, y]); thus, there is an h in H such that

h = αx + βy ∈ [x, y] i.e. y = −αx
β
+ h

β
, where α > 0 and β > 0 follow from

the fact x, y /∈ H. That is, y ∈< x > +H, or (−D) ⊂< x > +H, from

which D ⊂< x > +H follows. Thus, X = D ∪H ∪ (−D) ⊂< x > +H.

Proof of Theorem 2

Denote by F the family of all vector subspaces F of X such that F∩E = ∅.

F is not empty since {0} ∈ F . Order F by set-inclusion i.e. F1 ≤ F2 if

F1 ⊂ F2 for F1 and F2 in F . If T is a totally ordered subfamily of F , then∪
F∈T F is in F and is an upper bound of T . By Zorn’s lemma, F has a

maximal element H.

Let D = H + E. Since E is a linearly open convex cone, so is D. It

follows from 0 /∈ E that D ∩ H = ∅. We show that H is a hyperplane to

conclude the proof; for this, it suffices to check that D ∪ H ∪ −D = X by

Proposition 1. Let x /∈ H. Then < x > +H meets E since H is maximal

in F . Thus, there is h ∈ H and nonzero λ ∈ R such that h + λx ∈ E, as a

consequence λx ∈ H + E = D. Then x ∈ D or −D depending on λ > 0 or

λ < 0. This shows that X = D ∪H ∪ −D. �

Theorem 3. Suppose that E is a nonempty linearly open convex cone in X

5
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and C a nonempty convex set in X such that C ∩E = ∅, then there is ℓ ∈ X ′

such that ℓ(C) ≥ 0 and ℓ(E) < 0.

Proof. It is clear that (Con C) ∩ E = ∅; hence if we put D = E − (Con C),

D is a linearly open convex cone not containing 0. By Theorem 2, there is

a hyperplane H in X such that H ∩D = ∅. Choose ℓ ∈ X ′ with ker ℓ = H

and ℓ(D) < 0. Now for x ∈Con C, y ∈ E, and γ > 0,


ℓ(y) < γℓ(x);

γℓ(y) < ℓ(x).

Let γ → 0. It follows that ℓ(y) ≤ 0 for y ∈ E and ℓ(x) ≥ 0 for x ∈Con C.

In particular, ℓ(C) ≥ 0.

It remains to show that ℓ(y) < 0 for y ∈ E. Choose x0 ∈ X with

ℓ(x0) > 0, then y + tx0 ∈ E if |t| is small enough because E is linearly open.

Since y + tx0 ∈ E, ℓ(y + tx0) ≤ 0; hence ℓ(y) ≤ −tℓ(x0) < 0.

Theorem 4. Suppose that p is a sublinear functional on a vector space X

and C a nonempty convex cone in X. Then there is an ℓ ∈ X ′(p) such that

ℓ(C) ≥ 0 if and only if p(C) ≥ 0.

Proof. Assume p(C) ≥ 0. If the negative cone Q of p is empty i.e. p(X) ≥ 0,

then we choose the zero functional ℓ = 0. Suppose now that Q is a nonempty

linearly open convex cone in X; since p(C) ≥ 0 and p(Q) < 0, Q ∩ C = ∅.,

6
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by Theorem 3, there is ℓ̂ ∈ X ′, such that ℓ̂(C) ≥ 0 and ℓ̂(Q) < 0. It will be

shown presently that there is σ > 0 such that σℓ̂ ≤ p.

Define a map f from X into R2 by

f(x) = (p(x),−ℓ̂(x)), x ∈ X,

and let D be the smallest convex cone containing f(X). We claim that

D ∩ E = ∅, where E = {(r1, r2) : r1 < 0 and r2 < 0} is a linearly open

convex cone. If d ∈ D, then there are α1, ..., αk in R+ and x1, ..., xk in X

such that

d =Σm
k=1αkf(xk)

=(Σm
k=1αkp(xk),−Σm

k=1αkℓ̂(xk))

=(Σm
k=1p(αkxk),−ℓ̂(Σm

k=1αkxk)).

Assume Σm
k=1p(αkxk) < 0. Since p(Σm

k=1αkxk) ≤ Σm
k=1p(αkxk) < 0, Σm

k=1αkxk

is in Q. But the fact that ℓ̂(Q) < 0 implies −ℓ̂(Σm
k=1αkxk)) ≥ 0 i.e. D∩E = ∅.

By Theorem 3, there is (α1, α2) in R2 with α2
1 + α2

2>0 such that
α1r1 + α2r2 < 0 for (r1, r2) ∈ E;

α1p(x)− α2ℓ̂(x) ≥ 0 for x ∈ X.

The first inequality shows that α1 ≥ 0 and α2 ≥ 0, while the second inequality

shows that α1 > 0 and α2 > 0 due to the fact Q ̸= ∅. The second inequality

also shows that σℓ̂ ≤ p, for σ = α2

α1
. If we put ℓ = σℓ̂, then ℓ ∈ X ′(p) and

7
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ℓ(C) ≥ 0, this proves one direction of Theorem 4. The other direction is

obvious.

Remark. If the negative cone Q of the given sublinear functional p is empty,

Theorem 4 does not give much information; on the other hand, if Q ̸= ∅,

Theorem 4 guarantees the existence of nonzero ℓ ∈ X ′(p) with ℓ(C) ≥ 0.

Observe that if Y is a vector subspace of X and ℓ(Y ) ≥ 0 for ℓ ∈ X ′, then

ℓ(Y ) = 0. This fact is a special case of the following proposition.

Proposition 2. Let Y be a vector subspace of vector space X and C a

nonempty convex cone in X. Then it follows from ℓ(C + Y ) ≥ 0 for ℓ ∈ X ′

that ℓ(Y ) = 0.

Proof. Assume that ℓ(C + Y ) ≥ 0. Let c ∈ C and y ∈ Y . Then ℓ(c+ αy) =

ℓ(c) + αℓ(y) ≥ 0 because c + αy ∈ C + Y for all α ∈ R. Suppose that

there is a y ∈ Y such that ℓ(y) ̸= 0; then if we put α = −|ℓ(c)|−1
ℓ(y)

, we have

ℓ(c) + αℓ(y) < 0, which contradicts to the fact that ℓ(c) + αℓ(y) ≥ 0 for all

α ∈ R. Therefore, ℓ(y) = 0 for all y ∈ Y .

A useful generalization of Theorem 4 is the following main theorem of

this thesis:

Theorem 5. Suppose that p is a sublinear functional on a vector space X,

C a nonempty convex cone in X, and Y a vector subspace of X. Then there

is an ℓ ∈ X ′(p) such that ℓ(C) ≥ 0 and ℓ(Y ) = 0 if and only if p(C+Y ) ≥ 0.

8
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Proof. It is clear that C + Y is a convex cone. By Theorem 4, there is an

ℓ ∈ X ′(p) such that ℓ(C + Y ) ≥ 0. By Proposition 2, ℓ(Y ) = 0. Thus for all

c ∈ C, ℓ(c) = ℓ(c) + ℓ(y) = ℓ(c+ y) ≥ 0, which implies ℓ(C) ≥ 0. The other

direction is obvious.

Corollary 1. Suppose that p is a sublinear functional on a vector space X,

and Y a vector subspace of X. Then there is an ℓ ∈ X ′(p) such that ℓ(Y ) = 0

if and only if p(Y ) ≥ 0.

Proof. Put C = {0} and use Theorem 5.

Although Corollary 1 is a special case of Theorem 5, we shall see in §3

that a very elegant and important generalization of Hahn-Banach theorem

follows from it (see Theorem 8).

Remark. For a proper linearly open cone Q in a vector space X, one can

construct a sublinear functional p such that Q = {x ∈ X : p(x) < 0} by the

following steps.

1. Fix x0 ∈ Q and consider the family

L = {ℓ ∈ X ′ : ℓ < 0 on Q and ℓ(x0) = −1}.

L is nonempty by Theroem 2.

2. For x ∈ X, there is a σ > 0 such that x0 + σx ∈ Q. For ℓ ∈ L,

ℓ(x) = ℓ(x0+σx)−ℓ(x0)
σ

≤ 1
σ
.

9
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3. For z ∈ Q, there is a σ > 0 such that z − σx0 ∈ Q. For ℓ ∈ L,

ℓ(z) = ℓ(z − σx0) + ℓ(σx0) ≤ −σ.

4. For z /∈ Q, {z} is a convex set disjoint to Q. By Theorem 3, there is an ℓ

s.t. ℓ(Q) < 0 and ℓ(z) ≥ 0, where the linear functional ℓ̂ with ℓ̂(x) = ℓ(x)
−ℓ(x0)

and ℓ̂(x0) = −1 is in L. Hence p(z) ≥ ℓ̂(z) ≥ 0.

5. Define p(x) = supℓ∈L ℓ(x). By (2), p is finite and hence is a sublinear

functional. By (3) and (4), Q = {x : p(x) < 0}.

To conclude this section, we consider an immediate consequence of The-

orem 4.

Theorem 6. Let X and Y be compact Hausdorff spaces, {fi} and {gi} be two

families of real-valued continuous functions defined on X and Y respectively

and indexed by the same index set I. Then the following two statements are

equivalent:

(⋆) There exist probability measures µ and ν on X and Y respectively such

that ∫
X

fidµ ≤
∫
Y

gidν, i ∈ I.

(⋆⋆) For any positive integer n we have

Minx∈XΣ
n
k=1λkfik(x) ≤ Maxy∈YΣ

n
k=1λkgik(y)

for all i1, ..., in in I and all λ1 ≥ 0, ..., λn ≥ 0.

10
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Proof. (⋆) ⇒ (⋆⋆) is obvious. Assume that (⋆⋆) holds. Let hi = −fi for all

i ∈ I. Then (⋆⋆) implies

Maxx∈XΣ
n
k=1λkhik(x) +Maxy∈YΣ

n
k=1λkgik(y) ≥ 0. (3)

We then define

C = {(Σn
k=1λkhik ,Σ

n
k=1λkgik)| n ∈ N, i1, ..., in in I and all λ1 ≥ 0, ..., λn ≥ 0}.

Clearly C is a convex cone in the vector space V = C(X) × C(Y ) where

C(X) and C(Y ) are vector spaces consisting of all continuous functions on

X and Y respectively. Define p : V → R by

p(f, g) = Maxx∈Xf(x) +Maxy∈Y g(y),

for f ∈ C(X) and g ∈ C(Y ).

Therefore, p(C) ≥ 0 from (3). By Theorem 4, there is an ℓ ∈ V ′(p)

such that ℓ(C) ≥ 0. Since ℓ(f, g) = ℓ1(f) + ℓ2(g) where ℓ1 ∈ C(X)′ and

ℓ2 ∈ C(Y )′, ℓ(f, g) ≤ p(f, g) implies ℓ1(f) ≤ p(f, 0) and ℓ2(g) ≤ p(0, g); it

follows then that ℓ1 and ℓ2 are positive linear functionals on C(X) and C(Y ).

By Riesz Representation Theorem (cf.for example, [13, §3.10]), ℓ1(f) =∫
X
fdµ, ℓ2(g) =

∫
Y
gdν for some probability measures µ and ν on X and

Y respectively. But ℓ(C) ≥ 0 implies

∫
X

hidµ+

∫
Y

gidν ≥ 0, i ∈ I,

11



doi:10.6342/NTU201700955

or ∫
X

fidµ ≤
∫
Y

gidν, i ∈ I.

At this point, we remark that Theorem 6 is proved in [11] by using the

following theorem which is derived from Theorem 2.

Theorem 7. For i=1,2, let qi be a sublinear functional on a real vector

space Ei and let τi be a map from a set S into Ei. Then the following two

statements are equivalent:

(⋆) There are ℓ1 and ℓ2 in E ′
1 and E ′

1 respectively with ℓ1 ≤ q1 and ℓ2 ≤ q2

such that

ℓ1(τ1(s)) ≤ ℓ2(τ2(s)) ∀s ∈ S.

(⋆⋆) For any positive number n we have

−q1(−Σn
i=1λiτ1(si)) ≤ q2(Σ

n
i=1λiτ2(si))

for all s1, ..., sn in S and all λ1 ≥ 0, ..., λn ≥ 0.

12
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3 Applications

As an application of Corollary 1, we consider the Agnew-Morse generalization

of Hahn-Banach theorem(cf. [10], §3).

Theorem 8 (Agnew-Morse). Let p be a sublinear functional on a vector

space X and f ∈ Y ′(p) where Y is a vector subspace of X. Suppose that

there is a collection A of linear maps A from X into itself such that AY ⊂ Y

and for any A,B ∈ A, the following relations hold:

A ◦B = B ◦ A, p ◦ A = p, and f ◦ A|Y = f.

Then there is an F ∈ X ′(p) such that F |Y = f and F ◦A = F for all A ∈ A.

Observe that if such an F in Theorem 8 exists, then from F ◦ A = F ,

F (x − Ax) = 0 follows; and if we let XA collect all elements of the form

x′ = Σm
k=1(xk −Akxk) where m ∈ N, x1, ..., xm ∈ X and A1, ..., Am ∈ A, then

F (x′) = 0 for all x ∈ XA, and consequently,

p(x′ + y) ≥ F (x′ + y) = F (y) = f(y)

for x′ ∈ XA and for y ∈ Y . But the following key lemma claims the same

conclusion without requiring the existence of F .

Lemma 1. Assume that X,Y, p, f,A satisfy the conditions in Theorem 8.

Let XA collect all elements of the form Σm
k=1(xk − Akxk) where m ∈ N,

13
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x1, ..., xm ∈ X and A1, ..., Am ∈ A. Then

p(x′ + y) ≥ f(y)

for all x′ ∈ XA and y ∈ Y .

Proof. For every A ∈ A and n ∈ N, define A[n] = 1
n
Σn−1

j=0A
j. Then

p(A[n]x) = p(
1

n
(Σn−1

j=0A
j)(x)) =

1

n
p(Σn−1

j=0 (A
jx)) ≤ 1

n
Σn−1

j=0p(A
jx);

from p ◦ A = p, we have

1

n
Σn−1

j=0p(A
jx) =

1

n
Σn−1

j=0p(x) = p(x).

i.e.

p(x) ≥ p(A[n]x).

Since A1, ..., Am ∈ A are mutually commutative, Πm
k=1A

[nk]
k is meaningful. By

iterating,

p(x) ≥ p(Πm
k=1A

[nk]
k x). (4)

Let x′ = Σm
k=1(xk − Akxk). For a fixed n ∈ N, there are correspondent

linear maps A
[n]
1 , ..., A

[n]
m . By (2) and (4), we have

p(y + x′) ≥ p(Πm
j=1A

[n]
j (y + x′)) ≥ p(Πm

j=1A
[n]
j y)− p(−Πm

j=1A
[n]
j x′).

14
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Regarding the term p(−Πm
j=1A

[n]
j x′), we have

p(−Πm
r=1A

[n]
j x′)

=p(−Πm
r=1A

[n]
j (Σm

k=1(xk − Akxk)))

=p(Σm
k=1(Π

m
j=1A

[n]
j (Akxk − xk))) (by linearity)

≤Σm
k=1p((Π

m
j=1A

[n]
j (Akxk − xk))) (by (1))

=Σm
k=1p(Π

m
j=1,j ̸=kA

[n]
j (

1

n
(An

kxk − xk)))

≤Σm
k=1p(

1

n
(An

kxk − xk)) (by (4))

≤Σm
k=1(

1

n
(p(An

kxk) + p(−xk))) (by (1))

=
1

n
Σm

k=1(p(xk) + p(−xk)) (observe that p ◦ A = p).

Namely,

−p(−Πm
j=1A

[n]
j x′) ≥ − 1

n
Σm

k=1(p(xk) + p(−xk)).

Hence if we put c= Σm
k=1(p(xk) + p(−xk)), we obtain

p(x′ + y) ≥ p(Πm
j=1A

[n]
j y)− p(−Πm

j=1A
[n]
j x′) ≥ f(Πm

j=1A
[n]
j y)− c

n
= f(y)− c

n
.

Then Lemma 1 follows as n → ∞.

Proof of Theorem 8

Define p̂ : X ⊕ Y → R by

p̂(x, y) = p(x) + f(y), x ∈ X, y ∈ Y.

15
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It is clear that XA is a vector subspace of X. Let Ŷ = {(x′+y,−y) : x ∈ XA

and y ∈ Y }. Ŷ is a vector subspace of X ⊕ Y . For all (x′ + y,−y) ∈ Ŷ ,

p̂(x′ + y,−y) = p(x′ + y) + f(−y) ≥ 0 by Lemma 1. Namely, p̂(Ŷ ) ≥ 0.

Now we apply Corollary 1; there is then an (F, FY ) in (X ⊕ Y )′(p̂) such

that (F, FY )(Ŷ ) = 0. That (F, FY ) is in (X ⊕ Y )′(p̂) implies F ∈ X ′(p) and

FY = f ; F |Y = FY = f follows from (y,−y) ∈ Ŷ and F (y) + FY (−y) = 0;

F ◦ A = F follows from (x′, 0) ∈ Ŷ and F (x′) = 0. �.

Remark. Let Ã collect all finite product of elements in A and identity map

I. That is,

Ã = {A1 ◦ A2, ..., ◦An : A1, ..., An ∈ A, n ∈ N} ∪ {I}.

Then Ã is an abelian semigroup with the operation ◦.

If we replace A by Ã in Theorem 8, the arguments in the proof of Lemma

1 still hold. Then it is nature to ask what kind of group would have these

conditions as announced in Theorem 8. We might also ask whether a certain

class of invariant linear functionals on a vector subspace of a given function

space can be extended to the whole space. For the next main application

of Theorem 5, the existence of invariant means on an abelian group will be

considered(c.f[7, §1.1]).

Let G be a group and denote by B(G) the linear space of all complex-

valued bounded functions in G. For x ∈ G and f ∈ B(G), fx ∈ B(G) where

16
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fx(a) = f(ax−1) for each a ∈ G. An invariant mean on B(G) is a linear

functional µ : B(G) → C such that

(i) µ(f) ≥ 0 if f ≥ 0 and µ(1) = 1;

(ii) µ(fx) = µ(f) for all f ∈ B(G) and x ∈ G;

(iii) µ(f̄) = µ(f).

A group G is called an amenable group if there is an invariant mean on B(G).

From (i) and (iii), let B(G) be the space of all real-valued bounded func-

tions instead. The existence of a linear functional µ which satifies

(i) µ(f) ≥ 0 if f ≥ 0 and µ(1) = 1, and

(ii) µ(fx) = µ(f) for all f ∈ B(G) and x ∈ G

is sufficient to provide an invariant mean. We are ready to prove that there

is an invariant mean on every abelian group by using Theorem 5.

Theorem 9. All abelian groups are amenable.

Proof. Put X = B(G), Y = {Σm
k=1(fk − fxk

k )| f1, ..., fm ∈ X, x1, ..., xm ∈ G},

and C = {g ≥ 0| g ∈ B(G)}. Define p : X → R by p(f) = supt∈G f(t).

Therefore, Y is a vector subspace of X and C a convex cone of X. We claim

that p(C+Y ) ≥ 0. Observe first that for g ∈ C and y = Σm
k=1(fk−fxk

k ) ∈ Y ,

we have

p(g + y) = sup(Σm
k=1(fk − fxk

k + g) ≥ supΣm
k=1(fk − fxk

k ) = p(y).

17
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Thus, it suffices to prove that p(Y ) ≥ 0.

For any Σm
k=1(fk − fxk

k )(t) = y(t) and any n ∈ N, we put

S = {(λ1, λ2, ..., λm)| 1 ≤ λk ≤ n with λk ∈ N for k = 1, ...,m}, and

Sk
i = {s ∈ S : λk = i}

for k = 1, ...,m and i = 1, ..., n. For (λ1, ..., λm) = s ∈ S, we denote by s̄ the

element xλ1
1 xλ2

2 ...xλm
m ∈ G.

Observe that for a fixed k,

(I) Sk
i ∩ Sk

j = ∅ if i ̸= j.

(II) ∪n
i=1 S

k
i = S.

(III) Σs∈Sk
i
fk(s̄)− Σs∈Sk

i+1
fk(s̄x

−1
k ) = 0.

From this observation, we have

18
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Σs∈Sy(s̄) = Σs∈SΣ
m
k=1(fk(s̄)− fxk

k (s̄))

= Σm
k=1Σs∈S(fk(s̄)− fk(s̄x

−1
k ))

= Σm
k=1(Σ

n
i=1Σs∈Sk

i
(fk(s̄)− fk(s̄x

−1
k ))) (by I and II)

= Σm
k=1(Σs∈Sk

n
fk(s̄)−((((((((

Σs∈Sk
n
fk(s̄x

−1
k )

+
�������Σs∈Sk

n−1
fk(s̄)−(((((((((

Σs∈Sk
n−1

fk(s̄x
−1
k )

...

+������Σs∈Sk
1
fk(s̄)− Σs∈Sk

1
fk(s̄x

−1
k ))

= Σm
k=1(Σs∈Sk

n
fk(s̄)− Σs∈Sk

1
fk(s̄x

−1
k )). (by III)

Note that |S| = nm and there are only m · 2nm−1 terms on RHS. If we

put M = supk supt |fk(t)|, we have

nm sup
t∈G

y(t) ≥ Σs∈Sy(s̄)

= Σm
k=1(Σs∈Sk

n
fk(s̄)− Σs∈Sk

1
fk(s̄x

−1
k ))

≥ m · 2nm−1(−M),

or, supt∈G y(t) ≥ −2mM
n

. p(y) ≥ 0 follows by letting n → ∞.

By Theorem 5, there is an µ ∈ B(G)′(p) such that µ(C) ≥ 0 and

µ(Y ) = 0, implying µ(f) ≥ 0 whenever f ≥ 0 and µ(f) = µ(fx) respec-
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tively. Moreover, observe that

1 = −(−1) = − sup(−1) = −p(−1) ≤ −µ(−1) = µ(1) ≤ p(1) = sup(1) = 1

from which µ(1) = 1 follows.

Note that the existence of invariant means on an abelian semigroup is

provided by the same proof. In the two applications above, the commu-

tativity of group operation is essential. When the group considered is not

abelian, topologies on the group have to be considered with compactness

playing important role. This is what we do next.

Let G be a locally compact Hausdorff topological group and denote by

Cc(G) the linear space of all real-valued continuous functions with compact

support in G. A right Haar integral on Cc(G) is a linear functional µ in

Cc(G)′ such that

(i) µ(f) ≥ 0 when f ≥ 0;

(ii) µ(fx) = µ(f) for all f ∈ Cc(G) and x ∈ G.

We denote by C+
c (G) = {f ∈ Cc(G)| f ≥ 0}. To begin with, we need

two well-known facts, Urysohn’s lemma and uniform continuity, on locally

compact Hausdorff topological groups.

Theorem 10 (Urysohn’s lemma). Given a compact set C contained in an
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open set O, there is an f ∈ C+
c (G) such that 0 ≤ f ≤ 1 and

(i)f = 1 on C;

(ii)f = 0 on Oc.

Proof. We claim first that for any compact C and open set U with C ⊂ U ,

there are compact set C ′ and open set U ′ such that C ⊂ U ′ ⊂ C ′ ⊂ U .

Since G is locally compact, for all c ∈ C, there is a compact set Mc such

that c ∈ int Mc ⊂ Mc ⊂ U . Since C is compact, there are c1, ..., cm in C such

that C ⊂ ∪m
k int Mck ⊂ ∪m

k Mck . The claim holds by letting C ′ = ∪m
k Mck

and U ′ = ∪m
k int Mck .

If C ⊂ U ′′ ⊂ C ′′ ⊂ U ′ ⊂ C ′ ⊂ U for some C, C ′, C ′′ compact and U , U ′,

U ′′ open, we say that C ′′ separates C and C ′. For given C ⊂ O, there are

C ′ and O′ such that C ⊂ O′ ⊂ C ′ ⊂ O. Define C(1) = C and C(0) = C ′.

Choose C(1/2) separating C(0) and C(1); then choose C(1/4) separating

C(0) and C(1/2) and C(3/4) separating C(1/2) and C(1). Continuing in

this process, we get C(θ) for every θ of the form θ = i
2n

with 0 ≤ i ≤ 2n.

Then for any real α with 0 ≤ α ≤ 1, define

C(α) = ∩θ≤αC(θ),

where θ is of the form i
2n

. Since each C(θ) is closed, C(α) itself is closed,

and so compact. Define C(α) = X if α < 0 and C(α) = ∅ if α > 1.
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Then for α < β, C(α) is a closed neighborhood of C(β), compact if α ≥ 0.

Now define f(x) = sup{α : x ∈ C(α)}. Immediately we see that f(x) = 0

for all x outside C(0), so that support(f) is compact and contained in O.

Furthermore, f(x) = 1 for all x ∈ C(1) and 0 ≤ f(x) ≤ 1 everywhere.

To complete this proof, we need to show that f is continuous. For real β

and γ we observe that on the one hand

f(x) ≥ β ⇔ x ∈ ∩α<βC(α) =: D(β),

and D(β) is a closed set, while on the other hand

f(x) > γ ⇔ x ∈ C(α) for some α > γ

⇔ x ∈ Int C(α′) for some α′ > γ

⇔ x ∈ ∪α′>r Int C(α′) =: E(γ),

and E(γ) is an open set. Thus,

γ < f(x) < β ⇔ x ∈ E(γ) ∩ (D(β))c,

which is open; so the preimage of a basic open set in R is open in X and f

is continuous.

Proposition 3. For f ∈ Cc(G), and ϵ > 0, there is an open neighborhood V

of e such that |f(x)− f(y)| < ϵ whenever yx−1 ∈ V .

Proof. For all x ∈ G, f−1((f(x)− ϵ
2
, f(x)+ ϵ

2
)) = A is an open neighborhood

of x; namely, Ax−1 = N(x) is an open neighborhood of e such that |f(y) −
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f(x)| < ϵ
2

whenever y ∈ N(x)x. Choose a symmetric open neighborhood

M(x) of e such that M2(x) ⊂ N(x). Let supp(f) ⊂ C for some compact

set C. Then there are x1, ..., xm ∈ C such that ∪m
k=1M(xk)xk ⊃ C. Then

V = ∩m
k=1M(xk) is a symmetric open neighborhood of e. To show that

|f(x) − f(y)| < ϵ when yx−1 ∈ V , we may assume that either x ∈ C or

y ∈ C. Note that yx−1 ∈ V ⇔ xy−1 ∈ V follows from V = V −1, so

we may assume that x ∈ C, therefore x ∈ M(xk)xk for some k. Then

y ∈ V x ⊂ VM(xk)xk ⊂ N(xk)xk ⇒ |f(xk) − f(y)| < ϵ
2
. Furthermore,

x ∈ M(xk)xk ⊂ N(xk)xk ⇒ |f(xk)− f(x)| < ϵ
2
. Thus, |f(x)− f(y)| < ϵ.

To construct an integral on Cc(G), the main concept is to estimate the

relative value of any f, F ∈ C+
c (G); namely, we are going to construct (f : F )

which almost equals µ(f)
µ(F )

.

Observe that for any compact set C and open set O in G, {Oc}c∈C is an

open cover of C, hence there are c1, ..., cn in C such that {Ock}k=1,..,n is a

finite open cover of C. Moreover, there is a smallest n such that C ⊂ ∪n
k=1Ock

and it is intuitive to define

(C : O) = Min{n ∈ N| ∃ c1, .., cn s.t. C ⊂ ∪n
k=1Ock}

to be the relative value of C and O. The following proposition shows that

there is a similar result on continuous functions.

Proposition 4. Given f ∈ C+
c (G), and nonzero F ∈ C+

c (G), there are
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(α1, x1), ... ,(αm, xm) in R+ ×G such that f ≤ Σm
k=1(αkF

xk).

Proof. There are a compact C and a constant α > 0 such that supp(f) ⊂ C

and f ≤ α. Since F is nonzero, there is a a ∈ G such that F (a) = 2β for some

β > 0. Since F is continuous, there is an open neighborhood O of e such

that F (x) ≥ β for all x ∈ Oa. Since C is compact and {Oc}c∈C is an open

cover of C, there are c1, ..., cm such that ∪m
k=1Ock ⊃ C. For x ∈ C, x ∈ Ock

for some k; hence α
β
F a−1ck(x) ≥ α ≥ f(x). So f(x) ≤ Σm

k=1
α
β
F a−1ck(x) for all

x ∈ C; namely, f ≤ Σm
k=1

α
β
F a−1ck .

Assume that µ is a right Haar integral and f ≤ Σm
k=1(αkF

xk). Since µ

is positive and invariant, we have µ(f) ≤ µ(Σm
k=1(αkF

xk)) = Σm
k=1αkµ(F ),

or, µ(f)
µ(F )

≤ Σm
k=1αk.

We aim to approximate µ(f)
µ(F )

. Thus, it is intuitive to take inf through all

possible αk as shown in the following definition.

Definition 1. For any f in C+
c (G) and nonzero F in C+

c (G), we define

(f : F ) = inf{Σm
k=1αk|f ≤ Σm

k=1(αkF
xk) for some (αk, xk)

′s in R+ ×G}.

Note that m is not a fixed arbitrary nature number in the definition.

Remark. If G is compact, then 1 is a continuous function with compact

support G and (f : 1) = inf{α : α is an upper bound of f } = sup(f).
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This suggests that we define a sublinear functional on Cc(G) using the

concept (f : F ) when G is locally compact; it seems that this is not observed

in the literature.

We list some simple but useful properties of (f : F ) in the following

proposition.

Proposition 5. Given f, f1, f2 in C+
c (G), and nonzero E,F in C+

c (G), we

have:

(1) For α > 0, (αf : F ) = α(f : F ).

(2) (f1 + f2 : F ) ≤ (f1 : F ) + (f2 : F ).

(3) If f1 ≤ f2, then (f1 : F ) ≤ (f2 : F ).

(4) (E : F ) ≥ supE
supF

> 0; if G is compact, (1 : F ) > 0.

(5) (f : F ) ≤ (f : E)(E : F ); if G is compact, (f : F ) ≤ (f : 1)(1 : F ).

(6) For x ∈ G, (f : F ) = (fx : F ).

Proof.

(1) follows from the fact that αf ≤ Σm
k=1(ααkF

xk) ⇔ f ≤ Σm
k=1(αkF

xk).

Now, if f1 ≤ Σm
k=1(αkF

xk) and f2 ≤ Σn
k=1(βkF

yk), then

f1 + f2 ≤ Σm
k=1(αkF

xk) + Σn
k=1(βkF

yk),

or

(f1 + f2 : F ) ≤ Σm
k=1αk + Σn

k=1βk;
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then (2) follows.

If f2 ≤ Σm
k=1(αkF

xk), then

f1 ≤ f2 ≤ Σm
k=1(αkF

xk),

namely,

(f1 : F ) ≤ Σm
k=1αk;

then (3) follows.

Let supE = r and supF = R. If E ≤ Σm
k=1(αkF

xk), then

r = supE ≤ supΣm
k=1(αkF

xk) ≤ Σm
k=1(αk supF xk) = Σm

k=1(αkR),

namely,
r

R
≤ Σm

k=1αk;

from which (4) follows.

If f ≤ Σn
j=1(βjE

yj) and E ≤ Σm
k=1(αkF

xk), then

f ≤ Σn
j=1(βj(Σ

m
k=1αkF

xk)yj) = Σn
j=1Σ

m
k=1(βjαkF

xkyj),

namely,

(f : F ) ≤ Σn
j=1Σ

m
k=1(βjαk) = (Σn

j=1βj)(Σ
m
k=1αk);

then (5) follows.

(6) follows from the fact that f ≤ Σm
k=1(αkF

xk) ⇔ fx ≤ Σm
k=1(αkF

xkx).
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It is a little complicated to prove the existence of right Haar integrals on

locally compact Hausdorff group; we shall first proceed to the proof of the

existence of right Haar integrals for the case that G is compact.

Lemma 2. Let G be a compact Hausdorff topological group. Given β > 0,

f1, ..., fn in C+
c (G) and x1, ..., xn in G, there is an ϵ > 0 such that

(Σn
j=1f

xj

j : F )(1 + ϵ) < Σn
j=1(fj : F ) + (β : F )

for any nonzero F ∈ C+
c (G).

Proof. By Proposition 5,

(Σn
j=1f

xj

j : F )(1 + ϵ) ≤ Σn
j=1(f

xj

j : F )(1 + ϵ)

= Σn
j=1(fj : F )(1 + ϵ)

= Σn
j=1(fj : F ) + ϵΣn

j=1(fj : F )

≤ Σn
j=1(fj : F ) + ϵΣn

j=1(fj : 1)(1 : F )

= Σn
j=1(fj : F ) + ϵΣn

j=1(fj : 1)
(β : F )

β
.

Lemma 2 follows if we choose ϵ < β
Σn

j=1(fj :1)
.

One might imagine that (C : O) should be more useful for the purpose of

approximation when open set O becomes smaller; the following lemma states

an argument realizing such an effect.
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Lemma 3. Let G be a compact Hausdorff topological group. Given β > 0

and fj’s∈ C+
c (G), for any ϵ > 0, there is an open set O (small in some sense)

and a nonzero F ∈ C+
c (G) with supp(F ) ⊂ O such that

Σn
j=1(fj : F ) + (β : F ) ≤ (Σn

j=1fj + β : F )(1 + ϵ).

Remark. Note that (Σn
j=1fj + β : F ) ≤ Σn

j=1(fj : F ) + (β : F ) has been

established by Proposition 5. But what is the distance between (Σn
j=1fj+β : F )

and Σn
j=1(fj : F ) + (β : F )? Do they close enough to form a right Haar

integral? Lemma 3 gives an answer that they can be arbitrary close as long

as supp(F ) lies in a small open set.

Proof of Lemma 3

Put fn+1 = β, p = Σn+1
j=1 fj and gj = fj/p for j = 1, ..., n + 1. Note that

{gj}j=1,..,n+1 are continuous on a compact topological group. So there is an

open set O such that |gj(x)−gj(y)| < ϵ
n+1

if x−1y ∈ O. By Urysohn’s lemma,

there is a nonzero F such that supp(F ) ⊂ O.

Let p ≤ Σm
k=1αkF

xk for some (αk, xk)
′s in R+ × G. Since supp(F xkgj) ⊂

Oxk, F xkgj ≤ F xk(gj(xk) +
ϵ

n+1
). Now

fj = pgj ≤ Σm
k=1αkF

xkgj ≤ Σm
k=1αkF

xk(gj(xk) +
ϵ

n+ 1
);

thus

(fj : F ) ≤ Σm
k=1αk(gj(xk) +

ϵ

n+ 1
).
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Note that Σn+1
j=1 (gj(xk)+

ϵ
n+1

) = (1+ ϵ). We have then (recall that fn+1 = β)

Σn+1
j=1 (fj : F ) ≤ Σm

k=1αk(1 + ϵ),

and Lemma 3 follows by letting Σm
k=1αk → (p : F ). �

Corollary 2. Let G be a compact Hausdorff topological group. Given fj’s∈

Cc(G) and xj’s∈ G, then

supΣn
j=1(fj − f

xj

j ) ≥ 0.

Proof. For any f ∈ Cc(G), and any x ∈ G, observe that

f − fx = f+ − f− − (f+)x + (f−)x

= {f+ − (f+)x}+ {(f−)x − f−};

namely,

f − fx = g − gx + h− hx−1

if g = f+ and h = (f−)x. Thus we may assume that all fj’s are in C+
c (G).

Suppose that Σn
j=1(fj − f

xj

j ) ≤ α, for some α < 0. Put β = −α > 0. We

have

Σn
j=1fj + β ≤ Σn

j=1f
xj

j . (5)

From Lemma 2 and Lemma 3, there is an ϵ > 0 and a nonzero F ∈ C+
c (G)

such that

(Σn
j=1f

xj

j : F )(1 + ϵ) < Σn
j=1(fj : F ) + (β : F ) ≤ (Σn

j=1fj + β : F )(1 + ϵ).
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However, (5) and Proposition 5 implies

(Σn
j=1fj + β : F )(1 + ϵ) ≤ (Σn

j=1f
xj

j : F )(1 + ϵ),

which leads to a contradiction. Thus, all upper bound α of Σn
j=1(fj − f

xj

j )

are nonnegative, or supΣn
j=1(fj − f

xj

j ) ≥ 0.

Theorem 11. There is a nonzero right Haar integral on every compact

Hausdorff topological group G.

Proof. Define sublinear functional p : Cc(G) → R by p(f) = sup(f). Let

C = C+
c (G) and Y a vector subspace spanned by f − fx, for all f ∈ Cc(G)

and x ∈ G. From Corollary 2, p(c + y) ≥ p(y) ≥ 0 for c ∈ C and y ∈ Y .

We conclude that p(C + Y ) ≥ 0. By Theorem 5, there is a linear functional

µ ∈ Cc(G)′(p) such that µ(C) ≥ 0 and µ(Y ) = 0; consequently,

(i) µ(f) ≥ 0 when f ≥ 0;

(ii) µ(fx) = µ(f)for all f ∈ Cc(G) and x ∈ G.

Since p(−1) = −1 and µ(−1) ≤ p(−1), µ is nonzero.

When right Haar integrals on a locally compact Hausdorff group G are

concerned, we use similar method. Since 1 is, in general, not a continuous

function with compact support, we fix a nonzero continuous function E ∈

C+
c (G) which plays the role of 1, where G is compact. Moreover, we construct
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a q ∈ C+
c (G) in Lemma 5 such that the quotient of functions still lies in

C+
c (G).

Lemma 4. Given (f1, x1), ..., (fn, xn) in C+
c (G) × G, q, E in C+

c (G) but

nonzero, and (a1, c1),...,(aℓ, cℓ) in R+×G, then for all ϵ > 0, there is a δ > 0

such that

(Σn
j=1f

xj

j + Σℓ
i=1aiE

ci + δq : F )(1 + δ) ≤ Σn
j=1(fj : F ) + (Σℓ

i=1ai + ϵ)(E : F )

for any nonzero F ∈ C+
c (G).

Proof. By Proposition 5,

(Σn
j=1f

xj

j + Σℓ
i=1aiE

ci + δq : F )(1 + δ)

≤[Σn
j=1(f

xj

j : F ) + Σℓ
i=1ai(E

ci : F ) + δ(q : F )](1 + δ)

=[Σn
j=1(fj : F ) + Σℓ

i=1ai(E : F ) + δ(q : F )](1 + δ)

=Σn
j=1(fj : F ) + (Σℓ

i=1ai)(E : F )

+δ[Σn
j=1(fj : F ) + Σℓ

i=1ai(E : F ) + (1 + δ)(q : F )].

It suffices to choose δ independent of F such that

δ[Σn
j=1(fj : F ) + Σℓ

i=1ai(E : F ) + (1 + δ)(q : F )] ≤ ϵ(E : F ).
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Now,

Σn
j=1(fj : F ) + Σℓ

i=1ai(E : F ) + (1 + δ)(q : F )

≤Σn
j=1(fj : E)(E : F ) + Σℓ

i=1ai(E : F ) + (1 + δ)(q : E)(E : F )

≤M(E : F ),

for some constant M > 0 independent of F . Lemma 4 follows if we choose

δ ≤ ϵ
M

.

Lemma 5. Given f1, ..., fn in C+
c (G), nonzero E in C+

c (G), and (b1, d1),...,(bℓ, dℓ)

in R+×G , then for any δ > 0, there is an open set O (small in some sense)

and a nonzero F ∈ C+
c (G) with supp(F ) ⊂ O such that

Σn
j=1(fj : F ) + Σℓ

i=1bi(E : F ) ≤ (Σn
j=1fj + Σℓ

i=1biE
di + δq : F )(1 + δ),

for some q in C+
c (G) depending only on fj’s.

Proof. There is a compact set C such that supp(fj)⊂ C for j = 1, ..., n. By

Urysohn’s lemma, there is a q ∈ C+
c (G) with q = 1 on C. For i = 1, ..., ℓ put

fn+i = biE
di ,and p = Σn+ℓ

j=1fj + δq; for j = 1, ..., n+ ℓ, we define

gj(t) =


fj
p
(t) if t ∈ C;

0 otherwise.

Note that {gj}j=1,..,n+ℓ are continuous on G. So there is an open set O such

that |gj(x) − gj(y)| < δ
n+ℓ

if x−1y ∈ O. By Urysohn’s lemma, there is a

nonzero F such that supp(F ) ⊂ O.
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Let p ≤ Σm
k=1αkF

xk , for some (αk, xk)
′s in R+ ×G. Since supp(F xkgj) ⊂

Oxk, F xkgj ≤ F xk(gj(xk) +
δ

n+ℓ
). Now

fj = pgj ≤ Σm
k=1αkF

xkgj ≤ Σm
k=1αkF

xk(gj(xk) +
δ

n+ ℓ
);

thus

(fj : F ) ≤ Σm
k=1αk(gj(xk) +

δ

n+ ℓ
).

Note that Σn+ℓ
j=1(gj(xk) +

δ
n+ℓ

) ≤ (1 + δ), hence

Σn+ℓ
j=1(fj : F ) ≤ Σm

k=1αk(1 + δ),

and Lemma 5 follows by letting Σm
k=1αk → (p : F ).

Corollary 3. Given (f1, x1), ..., (fn, xn) in Cc(G)×G, nonzero E in C+
c (G),

and (α1, y1),...,(αm, ym) in R×G, if

Σn
j=1(fj − f

xj

j ) ≤ Σm
k=1αkE

yk ,

then

Σm
k=1αk ≥ 0.

Proof. By similar argument as in the proof of Corollary 2, we may assume

that all fj’s are in C+
c (G). The equation Σn

j=1(fj − f
xj

j ) ≤ Σm
k=1αkE

yk is

equivalent to

Σn
j=1fj + Σℓ̃

i=1biE
di ≤ Σn

j=1f
xj

j + Σℓ
i=1aiE

ci ,
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for some (b1, d1),...,(bℓ, dℓ), (a1, c1),...,(aℓ, cℓ) in R+×G, where ℓ̃+ ℓ = m, ai’s

are the positive terms of αk’s and −bi’s are the negative terms of αk’s. By

Proposition 5,

(Σn
j=1fj +Σℓ̃

i=1biE
di + δq : F )(1+ δ) ≤ (Σn

j=1f
xj

j +Σℓ
i=1aiE

ci + δq : F )(1+ δ).

From Lemma 4 and Lemma 5, for all ϵ > 0 there is a δ > 0 and a nonzero

F ∈ C+
c (G) such that

Σn
j=1(fj : F ) + Σℓ̃

i=1bi(E : F )

≤(Σn
j=1fj + Σℓ̃

i=1biE
di + δq : F )(1 + δ)

≤(Σn
j=1f

xj

j + Σℓ
i=1aiE

ci + δq : F )(1 + δ)

≤Σn
j=1(fj : F ) + (Σℓ

i=1ai + ϵ)(E : F ).

Since ϵ can be arbitrarily small, we have Σℓ
i=1ai − Σℓ̃

i=1bi ≥ 0; i.e. Σm
k=1αk ≥

0.

Theorem 12. There is a nonzero right Haar integral on every locally compact

Hausdorff topological group G.

Proof. For a fixed nonzero E ∈ C+
c (G), define p on Cc(G) by

p(f) = inf{Σm
k=1αk|f ≤ Σm

k=1(αkE
xk) for some (αk, xk)

′s in R×G}.
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Clearly, for α > 0 and f , f1, f2 in Cc(G),

(I) p(αf) = αp(f).

(II) p(f1 + f2) ≤ p(f1) + p(f2).

(III) f1 ≤ f2 ⇒ p(f1) ≤ p(f2).

By Proposition 4, p(f) < ∞. We shall show p(f) > −∞ presently. From

Corollary 3,

p(Σn
j=1(fj − fj

xj)) = inf{Σm
k=1αk|Σn

j=1(fj − fj
xj) ≤ Σm

k=1(αkE
xk)} ≥ 0; (6)

in particular, p(0) ≥ 0. Now for any f ∈ Cc(G), f = f+ − f−. By (II) and

(III),

0 ≤ p(0) ≤ p(f+) ≤ p(f) + p(f−)

from which p(f) > −∞ follows; hence p is a sublinear functional on Cc(G).

Let C = C+
c (G) and Y a vector subspace spanned by f − fx, for all

f ∈ Cc(G) and x ∈ G. By (III) and Corollary 3, p(c + y) ≥ p(y) ≥ 0 for

c ∈ C and y ∈ Y . We conclude that p(C + Y ) ≥ 0. By Theorem 5, there

is a linear functional µ ∈ Cc(G)′(p) such that µ(C) ≥ 0 and µ(Y ) = 0;

consequently,

(i) µ(f) ≥ 0 when f ≥ 0;

(ii) µ(fx) = µ(f)for all f ∈ Cc(G) and x ∈ G.
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Since p(−E) = −1 and µ(−E) ≤ p(−E), µ is nonzero.

Remark. For every nonzero E ∈ C+
c (G), there is a correspondent sublinear

functional p and a right Haar integral µ such that 1 = µ(E) = p(E).
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4 Miscellaneous remarks

In Theorem 6, assume Y is a compact topological space. If we put

{fi}i∈I = {0}i∈I

and

{gi}i∈I = {h+Σn
k=1(fk−f yk

k )| h, fk’s are continuous with h ≥ 0 and y′ks ∈ Y },

then

0 ≤ Maxy∈Y (h+ Σn
k=1fk − f yk

k (y)) (7)

implies that there is an probability measure ν and

0 ≤
∫
Y

h+ Σn
k=1(fk − f yk

k )dν =

∫
Y

gidν i ∈ I,

or, ∫
Y

Σn
k=1f

yk
k dν ≤

∫
Y

h+ Σn
k=1fkdν.

ν is positive by letting fk = 0 for k = 1, ..,m; ν is invariant by letting h = 0;

thus, ν is an invariant measure. Obviously, (7) is equivalent to Corollary 2.

That is, Theorem 10 may be derived from Theorem 6 instead of Theorem 5.

With Lemma 1, one may prove Theorem 8 by Hahn-Banach Theorem as

following.
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Proof. (Agnew-Morse) Define Ỹ as the subspace of X spanned by Y and

XA. Thus for all z ∈ Ỹ , z = x′ + y for some x′ ∈ XA and y ∈ Y . Define

f̃ : Ỹ → R by

f̃(z) = f(y) if z = x′ + y for some x′ ∈ XA, y ∈ Y.

We claim f̃ is well-defined. Assume z = x′
1 + y1 = x′

2 + y2. Let x′ = x′
1 − x′

2

and y = y1 − y2. Note that x′ + y = 0. By Lemma 1, we have

0 = p(0) = p(x′ + y) ≥ f(y) = f(y1)− f(y2);

0 = p(0) = p((−x′) + (−y)) ≥ f(−y) = f(y2)− f(y1),

from which f(y1) = f(y2) follows. From this definition, for z = x′ + y in Ỹ ,

p(z) = p(x′ + y) ≥ f(y) = f̃(z). Thus, f̃ is a linear functional in Ỹ ′(p). By

Hahn-Banach Theorem, there is an F in X ′(p) such that F |Ỹ = f̃ . Clearly,

F satifies conditions required in Theorem 8.

Historically, Hahn proved the extension theorem in 1927 as follows (cf.[8]).

Theorem. (Hahn) Let Y be a vector subspace of the real normed vector

space X, and f a linear functional of Y . Then there is an F ∈ X ′ such that

F |Y = f and ||F || = ||f ||.

S. Banach gave a generalization of Hahn’s theorem in 1932 which is known

as Hahn-Banach Theorem (cf. [3]).
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Theorem. (Banach) Let Y be a vector subspace of the real vector space X.

Suppose that there is a sublinear functional p on X and a linear functional f

on Y where f(y) ≤ p(y) for all y ∈ Y . Then there is an F ∈ X ′ such that

F |Y = f and F (x) ≤ p(x) for all x ∈ X.

However, before Banach proved the Hahn-Banach theorem, he actually

have used the idea of Hahn-Banach theorem in 1923 (cf. [2]). In that paper,

Banach extended a certain linear functional to give a solution of a problem

of measures. Moreover, he proved that the isometry group of R1 is equipped

with the Hahn-Banach extension property, which is later generalized by Ag-

new and Morse.

Thereafter, von Neumann (cf. [14])developed Banach’s idea of the invari-

ant linear functional on topological group. He not only gave the definition

of amenable group but also proved the following proposition.

Proposition. (von Neumann)

1. Finite groups are amenable.

2. Abelian groups are amenable.

3. If N is a normal subgroup of a group G and both N and G/N are amenable,

then G is amenable.

In 1938, Agnew and Morse (cf. [1]), applying von Neumann’s results,

generalized Hahn-Banach Theorem, which is known as Agnew-Morse Theo-

39



doi:10.6342/NTU201700955

rem.

More systematic study on amenable groups and amenable semigroups

is carried out by Day in [4], [5] and [6]. Many results and applications of

invariant means were exposed systematically by Greenleaf in [7].
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