Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用數學科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2533
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor銀慶剛
dc.contributor.authorHsueh-Han Huangen
dc.contributor.author黃學涵zh_TW
dc.date.accessioned2021-05-13T06:41:35Z-
dc.date.available2020-07-13
dc.date.available2021-05-13T06:41:35Z-
dc.date.copyright2017-07-13
dc.date.issued2017
dc.date.submitted2017-06-19
dc.identifier.citationAbhirup Datta and Hui Zou. (2016). CoCoLasso for High-dimensional Error-in-variables Regression. https://arxiv.org/abs/1510.07123.
Alexandre Belloni, Mathieu Rosenbaum and Alexandre B.Tsybakov.(2014). An {l1; l2; linfinite}-Regularization Approach to High-Dimensional Errors-in-variables Models. https://arxiv.org/abs/1412.7216.
Alexandre Belloni, Mathieu Rosenbaum and Alexandre B.Tsybakov. (2016). Linear and Conic Programming Estimators in High-Dimensional Errors-in variables Models. https://arxiv.org/abs/1408.0241.
Ching-Kang Ing and Tze Leung Lai (2011). A stepwise regression method and consistent model selection for high-dimensional sparse linear models. Statist.Sinica,1473-1513.
Ching-Kang Ing and Kunling Huang (2016). Model Selection for High-Dimensional Multivariate Time Dependent Models (Unpublished master's thesis). National Taiwan University, Taipei City.
C.Z.Wei. (1987). Adaptive prediction by least squares predictors in stochastic regression models with applications to time series. Ann.Statist.15(4):1667-1682.
David F.Findley and Ching-Zong Wei.(1993).Moment bounds for deriving time series CLTs and model selection procedures. Statist.Sinica,453-480.
Po-Ling Loh and Martin J. Wainwright.(2012).High-dimensional regression with noisy and missing data:Provable guarantees with nonconvexity. Ann.Statist.40(3):1637-1664.
Temlyakov,V.N .(2000).Weak greedy algorithms. Adv.Comput.Math.12,213-227.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2533-
dc.description.abstractWe use a fast stepwise regression method, called orthogonal greedy algorithm (OGA) to select variables for high-dimensional time series model with measurement errors. Under a weak sparsity condition, we derive a convergence rate of OGA, which is expressed in terms of the number of iterations, the sample size and the order of the moment imposed on the error process. Under a strong sparsity condition, we develop a consistent model selection procedure using OGA and a high-dimensional information criterion.en
dc.description.provenanceMade available in DSpace on 2021-05-13T06:41:35Z (GMT). No. of bitstreams: 1
ntu-106-R04246010-1.pdf: 934153 bytes, checksum: 8f236e923d3d1cbaaf4134fc3858ba37 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents中文摘要………………………………………………………………………… i
英文摘要…………………………………………………………………………. ii
1.Introduction………………………………………………………………….. 1
2.OGA and Noiseless OGA……………………………………………….. 3
3.Uniform Convergence Rate of Empirical Prediction Error……………………... 4
4.Sure Screening Property and Model Selection Consistency…………………….. 9
5.Simulation Studies……………………………………………….. 16
參考文獻…………………………………………………………………….…… 23
附錄………………………………………………………………………..………. .24
dc.language.isoen
dc.subject時間序列zh_TW
dc.subject高維度zh_TW
dc.subject測量誤差zh_TW
dc.subject正交化貪婪演算法zh_TW
dc.subject稀疏性zh_TW
dc.subjectHigh-dimensionalen
dc.subjectsparsityen
dc.subjecttime seriesen
dc.subjectmeasurement erroren
dc.subjectOGAen
dc.title高維度時間序列並帶有測量誤差模型之模型選擇zh_TW
dc.titleModel Selection for High-Dimensional Time Series Models with Measurement Errorsen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee俞淑惠,黃信誠,徐南蓉,鄭又仁
dc.subject.keyword高維度,測量誤差,正交化貪婪演算法,稀疏性,時間序列,zh_TW
dc.subject.keywordHigh-dimensional,measurement error,OGA,sparsity,time series,en
dc.relation.page30
dc.identifier.doi10.6342/NTU201700925
dc.rights.note同意授權(全球公開)
dc.date.accepted2017-06-19
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用數學科學研究所zh_TW
顯示於系所單位:應用數學科學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf912.26 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved