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Abstract

We use a fast stepwise regression method, called orthogonal greedy algorithm (OGA) to select
variables for high-dimensional time series model with measurement errors. Under a weak sparsity
condition, we derive a convergence rate of OGA, which is expressed in terms of the number of
iterations, the sample size and the order of the moment imposed on the error process. Under a strong
sparsity condition, we develop a consistent model selection procedure using OGA and a
high-dimensional information criterion.
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1 Introduction
Consider the simple linear regression without intercept

y=p"r+¢,

where x = (1, %9, ..., 2,)T is a p-dimensional random vector satisfying E(z) =
0=(0,0,...,00T and E(zz") = %,. B = (B, B, ..., Bp)T is a p-dimensional
constant vector. E(§) =0, E(£%) = 0¢ > 0, and g and & are independent.

Assume that w = z+n is observed instead of z, where w = (w1, wa, ..., wy) T,
n = (11,72, ...,7p)" is a vector of measurement errors, and y* = y + 1, is ob-
served instead of y, 7, is a measurement error, where E(n) = 0, E(nm") = %,
2

and 7 is independent of (z,¢), E(n,) = 0, E(n;) = op and 7, is inde-

pendent of (z,7,§). To make complicated things simple, we assume that

2 2

T s Unp) is a diagonal matrix. Note that since 1, can be

¥, = diag(o;, o
absorb into &, we still denote y as y* for simplicity and view £ as the random

errors after absorbing 7,.

If we regress y on w, then it follows that
y=p"w+¢,

where 8 = f —U and U = (3, + ¥,)”'%,3, noting that f* = § if
Vi=1,2,...,p, o, =0.

Let (y;,wy ), t = 1,2, ...,n, be observations, where w, = (w1, Wi, ..., wi,) 7.
We allow (yt,gtT,ﬂtT, &) be a stationary time series and p >> n. When p is
larger than n, there are computational difficulties in estimating the regres-

sion coefficients by standard regression methods. Ing and Lai (2011) propose
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the orthogonal greedy algorithm (OGA) to circumvent the computation in
high dimensional inversion matrix. They derive the convergence rate of OGA
and provide a consistent model selection procedure for high-dimensional time
independent models. Ing and Huang (2016) generalize the results to multi-
variate time series model setting and relax the moment bound assumptions
from exponential moment bounds to polynomial moment bounds. However,
none of them consider measurement errors in their models. Since we often
face data with measurement errors that cannot be ignored in many applica-
tions, recently, high-dimensional models with measurement errors has been
widely studied. Loh and Wainwright (2012) propose a non-convex modifica-
tion of Lasso for doing high-dimensional models with measurement errors and
missing data, they also consider a time series model setting but only the cases
within class of VAR(1) models with an upper restricted eigenvalue condition
for sample covariance matrix. Datta and Zou (2016) propose a modification
which is called Convex Conditioned Lasso (CoCoLasso) to circumvent the
problem of non-convexity and the method can handle with a general class
of corrupted data, but they only develop theories of the case that the true
regressors are fixed design and there is no theory of model selection for a time
series model setting. Belloni, Rosenbaum and Tsybakov (2014), (2016) use
a Dantzig Selector type method named matrix uncertainty (MU) selector for
doing high-dimensional model with measurement errors, but they do not con-
sider a time series model setting. To our best knowledge, the existing papers
that are related with high-dimensional model with measurement errors sel-
dom consider a time series setting additionally, and none of them use greedy
algorithm to do model selection with the previous model settings. This paper
focuses on the OGA method and generalizes the results in Ing and Lai (2011)

and Ing and Huang (2016) to a new dimension: high-dimensional time series
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models with measurement errors under polynomial moment bound assump-

tions.

In this paper, We provide an upper bound of the number of iterations and
derive the uniform convergence rate of empirical prediction error of OGA un-
der a weak sparsity condition. We prove the sure screening property of OGA
under a strong sparsity condition. We propose an information criterion to
do model selection, together with a trimming method, the whole procedure
is shown to achieve the oracle property. We also provide simulation studies
to show that with proper order of moment bounds, OGA+HDBIC+Trim
successfully identifies the smallest correct model with high ratios in some
general model settings. Although some additional conditions are needed, the
necessary conditions for OGA to do consistent model selection for models

with measurement errors remain simple.

The rest of this paper is organized as follows: in Section 2, we intro-
duce OGA and noiseless OGA. In Section 3, we derive the convergence rate
of OGA. In Section 4, we prove the sure screening property of OGA, and
introduce our model selection criterion along the OGA path which is called
high-dimensional information criterion (HDIC). We also proposed a trimming
method to exclude redundant variables and prove that OGA+HDIC+Trim
achieves model selection consistency. In Section 5, we present simulation

studies to illustrate the performance of OGA+HDIC+Trim.

2 OGA and Noiseless OGA

In this secition, we briefly introduce OGA and noiseless OGA that are
proposed by Ing and Lai (2011).
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Denote gx(w) as a sequence of linear approximations of the regression
function y(w) = @*T”LNU. Initializing with go(-) = 0, it computes the residuals
UM =y, — gi(wy), 1 <t < n, at the end of the kth iterations and chooses

w, 5 on which Ut(k) is regressed, such that
sJk+1

_ no o),
where ﬁ](-k) — 2 U vy e update

pIHEE Wiy

; - plk) 1
We) = We) + P wis
Uker(we) = Gr(we) + 5,7 w5
n U(k)wJ‘~
~(k Zt:l t t,] .
where 65, ) = okt s the tth component of vector wi =
Jk+1 Db Wi tJk41 Jk+1

tik+1
is the projection of Wi into the linear space spanned

~

W W

3k+1 B W3k+1 ) 3k+1

by (w3, Ws,, ..., W5 ), where w; = (w1, waj, ..., wy;)T. The orthogonalization
of the predictor variables allows us to use componentwise linear regression
to compute OLS, thereby circumventing the difficulties with computing the

inverse of high-dimensional matrix.

Noiseless OGA is similar to OGA but replaces y; by its mean y(w;). In
the next section, we’ll use noiseless OGA to derive the convergence rate of
the empirical prediction error of OGA. More details of OGA and noiseless
OGA can be found in Ing and Lai (2011).

3 Uniform Convergence Rate of Empirical Pre-
diction Error

In this section, we derive the convergence rate for OGA in linear re-

gression time series models with measurement errors in which the number of

4

d0i:10.6342/NTU201700925



regressors is allowed to be much larger than the number of observations.

According to OGA, §,(w;) = wf(jm)é(jm), where J, is the index set
of the variable selected by OGA after m iterations, w;(J) = (wyu,i € J)T¥
and Q(J) = O wi(Nw! () o0 wi(J)y, is the LSE based on model
J. Let K,, denote a prescribed upper bound on the number m of OGA it-
erations. To provide the uniform convergence rate of the empirical norm

% o (Gm(wy) — é*Tyv)t)Z, 1 <m < K,,, we make the following assumptions

below.

Assume {&};, is a martingale difference sequence with respect to an
increasing sequence of o-fields {F}, {nu},_, .7 = 1,2,...,n are martingale
difference sequences with respect to an increasing sequence of o-fields {.7:}},
wy, i = 1,2, ..., n, are F,_i-measurable, z,,i = 1,2, ..., n, are F;_;-measurable
and there exist ¢, ¢ with ¢o > ¢ > 2 s.t.

(C1) max Elz** =0(1),

1<t<n,1<i<p

sup  Ef|nu]?1 | F_1] < O < 0 aus., for some Cy > 0,
1<t<00,1<i<p

sup E[&|"|Fi—1] < Cy < 00 a.s., for some Cy > 0,
1<t<oo

(€2) lg%ngh/LﬁZ?:l(wtiwt]’ — o) = O(1),
o 1 n
1g}g§pE|\/_EZt:1(93tﬂtj — 0445) 72 = O(1),

where 0;; = E(wwy;), Ogij = E(ryix).

Remark. If w;; has a linear representation

o0

wy; = Z a(k)a;(t — k)

k=—00
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where (o(t), F;) are martingale difference sequences with —oo <t < co and

Elo(t)*| Fima] =
and there exists a positive constant Cy, s.t.
sup Bl ()| Fi] < G,
—oo<t<o0

with the spectral density function of wy;, denoted f; is square integrable,

o

max k__oo[E(wtijk,J) = max o / fi(Ndx = 0(1).

Then, by (2.10) in Findley and Wei (1993), the first condition in (C2) holds.
(C3) [I8]lx < oo

This assumption is the weak sparsity condition on the uncontaminated re-

gression coefficients.
(C) [|UIh = [I(Z + Xp) "8y Blh < oo

This assumption and (C4) assure the weak sparsity condition on the regres-

sion coefficients contaminated by measurement errors.

Remark. There are many ways to achieve (C4), for example, if the values
of measurement errors are restricted by the number of regressors, say

%), then (C4) holds, since ||§*H1 = Hé— (2x+2n)_12n§|]1 <

2 _
128 om = O
0.2
Bl (1 + /P 1;;;’; nnlzm P ). Another important example is the case that
1<

<p 5

(41, Te2..., Typ) has spemal covariance structure, for example, uncorrelated

structure. But, in general, (C4) does not hold without further conditions.

(C5) 5% — o0 as n — oo.
pql
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The following theorem gives the rate of convergence, which holds uniformly
over 1 < m < K,, for the empirical prediction error of OGA. The uni-
form convergence rate varies with the prescribed order of moments ¢; in
(C1). When the order of moments ¢; is smaller, the uniform convergence
rate becomes larger due to the weaker moment assumptions. Define R(J) =

E(wi(S)wi())") and 7i(J) = E(wuwi(J)).

Theorem 1. Assume (C1)-(C5). Suppose K,, = O( /), and

pir

: ) -1 ) *
13#%)1;1(” Amin(R(J)) >0, IS#(?)]-SaI}gnyi¢J R ()il < C* < o0, (3.1)

for some 6,C* > 0. Then

n S (O () =87 )
max ( o — 5 t)zOp(l).

1<m<K, m—l4+mn—1lpa

Proof.

—H;, Y)Y (W)~ Hj Y)
YT(w)(I = Hj, )Y (w) + L0V = Y(w)TH, (¥ =Y (w))

|
SI= 3= 3=
—~
~
—~ =+
g

where Y(w) = (w{é*,wgé*,...,wTé*)T, Y = (y1,y2,--,yn)’, and Hy is a
projection matrix project vectors into the linear space spanned by (w;,i € J),

where w; = (wy, W, ..., Wy) T . Let

_ YT(w)U-Hp)w; »~ _ YT(I-—Hj)w;
Hii=—""1 — " ML= " T — ">
n2|[|wl n2||w;l|
where || - || = || - ||2 denotes the Ly-norm in this paper. Consider two events

fary

2
A, (k) = s < ity |
(k) {(J7i):#(r%2§—1,i¢JluJ’ il < s(\/ 5 )}

B..(k) :{ min - max |u; > Eos( 7%)},

0<i<k—11<j<p
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where s is a positive constant independent of n and k, & = 2/(1 — &), for

0<§& <1,
On A,(m)N B,(m), for 1 < ¢ <m,

|'ujqflvjq| Z _|ﬂjqflvjq o ’ujqfl»jq’ + |’Iqufl,jq|

This is the generalization of noiseless OGA in the Appendix B in Ing and
Lai (2011). So, by Lemma B1 in Ing and Lai (2011), (C3), and (C4),

1
14+ mé2

1
~YH(w)(I = H;, )Y (W) = Oy )- (3.2)
On B¢(m), by (C3), (C4) and Lemma 1 in Appendix,

Ly T(w)(I — Hj; )Y (w) < min LyT(w)(I — H;)Y(w)

T 1<i<m—1"
2
[w;ll & a
< gg%Hé*lll e Sos\[ B
1
= 0,(—). (3.3)

It remains to prove that Ve > 0,ds > 0 s.t.
P(A5(m)) <, (3.4)
and the proof is shown in the Appendix.
So, by (3.2)-(3.4), we have
YT (W)L Hy, )Y (w) = Oy(-). (35

On the other hand,
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(Y =Y(w)TH; (Y —Y(w))

— %g*THjms*
<R ()l ma (730 €we)?
2
mpfn
= Oy( - ), (3.6)

where & = (&,&5,...,&5)". Theorem 1 follows form (3.5) and (3.6).

4 Sure Screening Property and Model Selec-
tion Consistency

In the first part of this section, we prove the sure screening property of

OGA under a strong sparsity condition:

(C6) L, satisfies L,, — 0 and /L2 — oo as n — oo s.t. for any
pql
max 0',272||[?’/||1

B # 0, 1651 = (AlnS(ES:H min o7 ) + Ln.
1<i<

<p M

Theorem 2. Assume (C1)-(C6), (3.1) and K, = O(, /-%). Then lim P(N C

pﬂ n—oo

an) =1, where N = {1 < j < p: 8; # 0} denote the set of relevant input
variables.
Proof. Let mg = |aL,?] = o(K,), for some positive constant a. Consider a

event

A* k == (1 i i < L2
n( ) {(JJ):#(%?;M%JWJ, K, ‘ =S n}?

for some positive constant s independent of n and k. By (3.4), we have
Vs > 0, lim P(A}°(K,)) = 0, which implies lim P(A;“(mg)) = 0. So, by
n—oo n—oo

similar arguments in the proof of Theorem 1, lim P(F,) = 0, where
n—oo

d0i:10.6342/NTU201700925



F, = {;Y"(w)(I - Hj, )Y(w) > Cmg'},

for some C' > 0. By (C3), (C6), it follows that #(N) = O(1), yielding
#(N U J,p,) = 0(K,). So, on {N N jﬁm # ()}, when n is large,

LY T(w)(I — Hj, )Y (w)
1 oxT T *

n” NnJe, Wijan (L - Hjmo )Wij;;lO Bij;nO
> . *2 . ) I

= (I]rél]{[l B ) 1§#IEJI)I;KH Amin(R(J))

> bL2,

for some b > 0, where wyj. = (W;,i € Nﬂjﬁno) = (Br,i €
mo

’ ﬁ;vmj,cno
NN JAﬁLO)T. The last inequality above follows from Lemma 3, (C6) and (3.1).
By choosing a in my = |aL;?] large enough, we have bL? > Cm;", and the

proof of Theorem 2 is complete.

To choose the smallest number of iterations that include all relevant
variables, we propose a high-dimensional information criterion (HDIC). De-
fine 65 = n 'Y (y¢ — Grs)?, where 3y denotes the fitted value of y;
when Y = (y1,¥2,...,yn)" is projected into the linear space spanned by w;,

j€J#0, setting .y =0 if J = 0. Let

HDIC(J) = TLlOg (3'3 + #(J)wnp%7

~

k, = arg min HDIC(J,),
1<k<Kp
W, — 00, wnp% = o(nL,"), (4.1)
kn =min{k : 1 <k < K,,N C J;}(minp = K,,).

Note that k, is the number of OGA iterations we choose according to HDIC,
and k, is the minimal number of iterations that includes all relevant regres-

sors along an OGA path.

10
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To achieve consistency of model selection under (C6), the strong sparsity
condition, we need to assume the contaminated regression coefficients con-
verges to the uncontaminated regression coefficients in an appropriate rate,
which means the measurement errors must converges to 0 in probability with
some rate:

2

(C7) [|U]ls = O(\/ B,

n

2
note that max o2, = O(--1/2-) assures (C7). If the regressors are uncorre-

1<i<p
2

lated, then max o7 = O( EZ) assures (C7), which is weaker than general
ISP

conditions.

In addition, we assume a weak dependency on the square of regression errors:

(C8) max E(&}) = O(1) and E(§2€7,,) — 0f = o(1) as h — oo,
where c;?: E(&), vVt =1,2,...,n.

This assumption is used to derive weak law of large numbers of £2. The fol-

lowing theorem proves that k approaches k when n grows in probability sense.

Theorem 3. With the same notation and assumptions as in Theorem 2,

suppose (3.1), (C7) and (C8) holds, K, = O(_ /=%). Then lim P(k, =
pq1 n—oo

kn) = 1.

Proof. For notational simplicity, dropping the subscript n in k, and k,. Let

D, = {N C J,,} = {k <myg}, by Theorem 2, lim P(D,) =1. On {k < k},
n—oo

by definition of k£, it follows that

A A

exp(HDIC(J;)/n) < exp(HDIC(J;)/n),

11
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SO,

52— 62 <62 — 62 <62 {exp(ntwakpn) — exp(nlwpkpi )y, (4.2)
i g, =095 T =0 nip p nRPit) g %

Note that

”_1{23;1 (Z/t - Qt;j%71)2 - Z?:l(yt - f‘)t;j,;>2}
= (B Wi+ Dy Biwi+ € (Hy — Hy (55w 430 Brwi+ &)

R
*wl (I-H;  yw; +w! (I-H; *)2
18; WEU=Hy, wy 4wl (1-H )e")

nwl (I-H ; W
J'( chfl) Ik

A7 (X g, WZW)T(H@; —Hj )iy, Biwi)
2 (g, Brwn) T (Hy = Hj )55 wy +€7).
By (4.2),
@;;An + 253*;3” +AS'B2 + D, +2E,
< )\n_lwnp%mg(é'n + 052*) on {l% < l%} ﬂDn, (4.3)

for some A > 0, where

N — 1T (T _ 1. R

ziln =n"w, (1 HJ;;fl)Wj;;
— 1, T _ *

B,=n ij(I HJk—l)g

Dy =n"N gy iw) (Hy = Hy )Xy Biw)

By = n7 N (S, rw)(Hy, — Hy )3 w;, + €.

k k-1 Jg

In the Appendix, it is shown that V0 > 0,

P(A, < %,Dn)+P(|Bn| > 0Ly, D,)+P(|Cy| >0, D,)+P(|E,| > 0L%,D,) = o(1),
(4.4)
where v, = min;<4(y<my Amin(R(J)). From (4.3), (4.4), (C6), lim P(D,) =1, D,,

n—oo

4.
A-1B2 >0, and 6 is arbitrary, it follows that P(k < k) = o(1).

On {k > k}, by definition of k, it follows that

12
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50, it can be derived that
€1 (Hj — Hj )&
g5, W) (Hy, — H;)(S Biw)
VS, Bw) T (H;, — 1, )&
S (ET(T - 1 )E
g5, AW = Hy ) (S, W)
VS5 e (- H; )€Y

~ ~

(1 — exp(—n"tw, (k — k)pa)). (4.5)

Let F}, ;. denote the n x (k — k) matrix whose column vectors are w;,
VRS jk — jk Since
=& (1 — Hy ) Fy{F (= Hy ) F gy EL (- Hj )

< R In=3 FL( — Hj €|

< !If%*(fm)!!(2\!71*517,{,,;5*\!2 +2|[n72 F H €])
< 2(k — k) (an + bn),
where

@ = [|R7 (Ji,)|| max (n=2 S0, wi€)?,

1<i<p
bo = ||R7 ()|l max (72 300 wiis€h)?,

1<#(J)<k,igJ

13
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and it is shown in the Appendix that

P((k = k) (n + by) > On(1 — exp(—n~"tw, (k — k)pm)), k > k)

P((Qigs Br wi)"(H; . —H ) (X g, Biw) = Hn(l—exp(—n—lwn(l}—]})p%)),k >
)
P(|(X1g. Biwn) (Hj — Hj €| > 0n(1—exp(—n~"w, (k — k)p)). k > k)
P((Xigg, Brw) ™ (I = Hy ) (g, Biwn) 2 on, k > k)

P, B wi) (I — H; )€ = On, k> k)

of1). (4.7)

+ + + +
Pkl

So, by (A.9), (4.5), (4.7), it follows that P(k > k) = o(1), and the proof of

Theorem 3 is complete.

Even the true model will be included by OGA+HDIC, some redundant
variables could be contained. So, we provide a trimming method to trim out

redundant variables, Let
N = {j; : HDIC(J; — {;;}) > HDIC(J}),1 <1 <k} if k > 1,

and N = {j,} if k = 1. N is the subset of .J; after trimming. The following
theorem shows that OGA+HDIC+Trim will achieve the oracle property.

Theorem 4. Under the same assumption as in Theorem 3, lim P(N =
n—00
N)=1

Proof. For k > 1, define & = 1 if HDIC(J; — {};}) >HDIC(.J;) and 6, = 0

otherwise. Then

14
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~

P(N#N)<P(N#N,k>1,NCJ)+P(NZJ)+P(N#Nk=1)
§P(5l:1andﬁil:Oforsomelglgl;:,]\fg A,;,/%>1)
P((Sl:()andﬁjl%Oforsomelglgl;:,Ngj,;,l%>1)

Plk#k)+P(NZ J)+P(N#Nk=1). (4.8)

Let j,; — {jl} = ;. On {l% = ];3}, Since by similar arguments in the proof of
Theorem 3, it can be derived that V0 > 0, 1 <[ < /%,

~ 2

P((dy + by) > 0n(1 — exp(—n" w, (k — k)p))) = o(1), (4.9)

in which @, and b, are the same as @, and b, in (4.6) but with K, replaced

by k, and k replaced by k—1, and

P(() Brwi)"(Hjy —Ho) (D Biw,) = On(1—exp(—n""w,(k—k)pn))) = o(1),

r¢Qy T¢Q
(4.10)
P(I(Y_ Brwi)"(Hj = Ho)&| = 0n(1 — exp(—n~"w,(k — k)pn))) = o(1),
r¢Q
(4.11)
P(In~'¢"(I — Ho)&* — 02| = 0) = o(1), (4.12)
P((Y_ Brw,) (I — Hg)( Y Brw,) > 0n) = o(1), (4.13)
r¢Q rEQ;
P(|(> Brw,)"(I = Hg,)&*| = 0n) = o(1). (4.14)
rE¢Q
So, by (4.9)-(4.14), it follows that
P(6;=1and B; =0 forsome 1 <I< kN C Ji,k>1)=0(1). (4.15)
On the other hand,
P([n~'w} (I — Hg,)€*| > 0Ly, D) = o(1), (4.16)

15

d0i:10.6342/NTU201700925



P(n~'wI(I — Hg,)w;, < %”) = o(1), (4.17)
P(In™' (D Brwi)"(Hj — Ho,)(8;,w;, + €| > 0L%) = o(1).  (4.18)

I¢J;
So, by (A.9), (4.16)-(4.18) and similar arguments in the proof of Theorem 3,
it follows that
P(6; =0 and 3; # 0 for some 1 <1 < kN CJk>1)=o0(1). (4.19)

Finally, by (4.8), (4.15), (4.19) and Theorem 2 and 3, we have the desired

conclusion.

5 Simulation Studies

In this section, we report simulation studies of the performance of OGA+

HDBIC+Trim. These simulations consider the regression model
P’ p
vi=Y Bwg+ > Bwy+&, t=12..n, (5.1)
j=1 j=p/+1
where By 11, Byt2, ..y Bp = 0, p > n, ny areiid. N(0,07), Vi =1,2,...,n, j =
1,2,...,p, and are independent of x,;. & are i.i.d. N(0, 02) and are indepen-

dent of x4, my;. ny arve 1.i.d. N (0, afiy) and are independent of x;, 15, &

Examples 1 and 2 consider the case
Ty = dyj + 1Ty, (5.2)

in which 77 > 0 and (dy1, dsa, ..., dyj, %), t =1,2,...,n are i.i.d. normal with

mean (1,1, ...,1,0)7 and covariance matrix I. We standardize the variance of

xy; by replacing x;; with —~—. Since for any J C {1,2,...,p} and 1 <i <p

T
with ¢ & J,

Amin(12(])) =

ot on > 0and BT ()l < 1
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. . 72 . ~
(3.1) is satisfied. Moreover, Corr(wy;, wy;) = 177 increases when 7 grows.

Example 1. Consider (5.1) withp’ =5, (51, P, ..., B5) = (3, —3.5,4, -2.8,3.2),
of =1, o5 = 0.01 and assume that (5.2) holds. The cases 7 = 0, which
means the regressors are uncorrelated, 02 = 0.01,0.5,0.1, and (n,p) =
(50, 1000), (100, 2000), (200,4000) are considered here. We choose K, =
|5(n/ p%)%J and allow ¢; to vary between 4 and 15. We have also allowed D
in K,, = |D (n/pﬂ) | to vary between 3 and 10, and the results are similar
to those for D = 5. We perform 1000 simulations on each case. Define the

mean squared prediction errors

1000 p
MSPE = 1000 ]ZB Wil = )’
in which $n+1 1 xgi_l 9y ey xﬁf}er are the regressors associated with yfﬁrl, the
new outcome in the [th simulation run, and yffil denotes the predictor of
yfﬁrl Table 1 shows that OGA+HDBIC+Trim is very sensitive to the order
of moment bounds ¢y, it performs well with proper ¢;, but performs poorly
with improper ¢;. If ¢; is too small, the penalty for the number of predictor
variables in HDBIC is too large, so, OGA-+HDBIC tends to be underfitting;
if ¢, is too large, the penalty for the number of predictor variables in HD-
BIC is too small, so, OGA+HDBIC tends to be overfitting. With moderate
order of moment bounds (¢; = 8,10), in the simulations for n > 100, OGA
includes the 5 relevant regressors within K, iterations for 99.9% or more of
the simulations, and HDBIC+Trim identify the smallest correct model for

98% or more of the simulations.
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Tablel. Frequency, in 1000 simulations, of including all five relevant variables
(Correct), of selecting exactly the relevant variables (E), of selecting all relevant
variables and i irrelevant variables (E+1).

o, | @ n p E E+1 | E+2 | E43 | E+4 | E45 | Correct | MSPE
0.01 | 4 | 50 | 1000 0 0 0 0 0 0 0 64.02502
100 | 2000 0 0 0 0 0 0 0 53.08281

200 | 4000 0 0 0 0 0 0 0 55.59686

6 | 50 | 1000 | 623 0 0 0 0 0 623 24.54740
100 | 2000 | 1000 0 0 0 0 0 1000 0.15931

200 | 4000 | 1000 0 0 0 0 0 1000 0.08096

8 | 50 | 1000 | 911 18 0 0 0 0 929 4.34789
100 | 2000 | 1000 0 0 0 0 0 1000 0.17550

200 | 4000 | 1000 0 0 0 0 0 1000 0.08053

10 | 50 | 1000 | 571 | 129 43 17 17 7 922 10.29011
100 | 2000 | 983 16 1 0 0 0 1000 0.17837

200 | 4000 | 999 1 0 0 0 0 1000 0.16207

15| 50 | 1000 0 0 0 0 0 0 914 14.44628
100 | 2000 | 21 12 10 7 3 2 1000 4.70902

200 | 4000 | 677 | 225 75 14 5 2 1000 0.19443

0.05 | 5 | 50 | 1000 0 0 0 0 0 0 0 65.54043
100 | 2000 0 0 0 0 0 0 0 53.91476

200 | 4000 0 0 0 0 0 0 0 47.64495

6 | 50 | 1000 2 0 0 0 0 0 2 59.51543
100 | 2000 | 689 0 0 0 0 0 689 16.94148

200 | 4000 | 1000 0 0 0 0 0 1000 0.18862

8 | 50 | 1000 | 816 16 2 0 0 0 834 13.14926
100 | 2000 | 1000 0 0 0 0 0 1000 0.39365

200 | 4000 | 1000 0 0 0 0 0 1000 0.17408

10 | 50 | 1000 | 522 | 118 36 21 8 14 861 13.67555
100 | 2000 | 983 16 1 0 0 0 1000 0.44005

200 | 4000 | 998 2 0 0 0 0 1000 0.17630

15| 50 | 1000 0 0 0 0 0 0 854 26.64408
100 | 2000 | 11 17 12 10 3 0 1000 10.66257

200 | 4000 | 683 | 218 75 19 1 2 1000 0.43310
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072] ¢ n P E E+1 | E+2 | E4+3 | E+4 | E4+5 | Correct | MSPE
0.1 | 55| 50 | 1000 0 0 0 0 0 0 0 59.78768
100 | 2000 0 0 0 0 0 0 0 50.27432
200 | 4000 | 28 0 0 0 0 0 28 45.76851
6 50 | 1000 0 0 0 0 0 0 0 59.57889
100 | 2000 | 20 0 0 0 0 0 20 46.85445
200 | 4000 | 973 0 0 0 0 0 973 1.57907
8 50 | 1000 | 507 9 0 0 0 0 516 28.21477
100 | 2000 | 999 0 0 0 0 0 999 0.65213
200 | 4000 | 1000 0 0 0 0 0 1000 0.31026
10 | 50 | 1000 | 493 94 36 12 8 9 744 22.35131
100 | 2000 | 987 13 0 0 0 0 1000 0.63598
200 | 4000 | 999 1 0 0 0 0 1000 0.29356
15 | 50 | 1000 0 0 0 0 0 0 773 43.94780
100 | 2000 | 16 13 8 4 5 0 1000 16.68930
200 | 4000 | 684 | 222 66 20 3 2 1000 0.83435

Example 2. The settings of this example are the same with Example 1, but

we allow 03 to have a rate of convergence such that

2

2l < e/ =), (5.

for some C varies between 0.01 and 45. Two cases are considered here:

Case 1: Consider 77 = 0, which means the regressors are uncorrelated, and

let 0727 =C \/;. In this case, the inequality in (5.3) becomes an equality.
Table 2 shows that OGA+HDBIC+Trim agrees with the asymptotic theory
of Theorem 4. In the cases of n = 50, p = 1000, OGA can include all relevant
variables at least 90% of the time if C' < 1 (07 < 0.02), furthermore, with
proper order of moment bounds (¢; = 8), OGA+HDBIC+Trim can identify
the smallest correct model over 88% of the time. In the cases of n > 100,
OGA always include all relevant variables when C' <5 (0,27 < 0.085), further-
more, when ¢; = 8,10, HDBIC+Trim identifies the smallest correct model
at least 98% of the time. In the case of n = 200, p = 4000, ¢; = 12,

even if 02 = 0.625, which is 62.5% of the variance of the real input variables,
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OGA-+HDBIC+Trim could still identify the smallest correct model for 91.5%
of the time. Since the penalty term of each number of predictor variables in
HDBIC is log(n)p%, when n is small, a small ¢; is appropriate to prevent
from being overfitting; When n is large, a larger ¢; can be tolerated without

being seriously overfitting.

Case 2: Consider 77 = 2, which means the regressors are highly correlated
2

(80%), and let o7 = C\/iﬁ 7%, which implies (5.3). Table 3 shows that in
the cases of n = 50, p = 1000, the performance of OGA is getting worse with
the ratio of including all relevant variables decreases to about 50 ~ 60% of
the time when C' = 0.01 (02 is about 0.0001) due to the highly correlatedness
of the regressors. However, when n > 100, ¢; = 10,12, C' <5 (0727 < 0.024),
OGA can include all relevant variables for 98% or more of the time, and
HDBIC+Trim identifies the smallest correct model for 80% or more of the
time. In the case of n = 200, p = 4000, ¢; = 10, C =35 (a?7 is about 0.09),
HDBIC+Trim can identify the smallest correct model for 85% of the time.

20

d0i:10.6342/NTU201700925



n‘m

1

Table2. Case 1 in Example 2, with n = 0 and 0727 = C'\/ Z~. The other notations
are the same in Table 1.

Q C n p E E+1 | E+2 | E43 | E+4 | E4+5 | Correct MSPE 072,
8 | 0.01 | 50 | 1000 | 913 13 0 0 0 926 6.28107 | 0.00020
100 | 2000 | 999 1 0 0 0 1000 0.11205 | 0.00016
200 | 4000 | 1000 0 0 0 0 1000 0.05414 | 0.00012
1 50 | 1000 | 887 13 0 0 0 900 7.44817 | 0.02075
100 | 2000 | 1000 0 0 0 0 1000 0.18092 | 0.01592
200 | 4000 | 1000 0 0 0 0 1000 0.08328 | 0.01223
5 50 | 1000 | 459 8 1 0 0 468 31.75064 | 0.11312
100 | 2000 | 999 1 0 0 0 1000 0.53822 | 0.08503
200 | 4000 | 1000 0 0 0 0 1000 0.20888 | 0.06431
20 50 | 1000 0 0 0 0 0 0 45.31566 | 0.68492
100 | 2000 6 0 0 0 0 6 34.84350 | 0.45657
200 | 4000 | 963 0 0 0 0 963 1.03303 | 0.31875
10 | 0.01 | 50 | 1000 | 569 | 125 16 920 9.10107 | 0.00017

100 | 2000 | 984 16
200 | 4000 | 1000 0
1 50 | 1000 | 559 | 130
100 | 2000 | 980 19
200 | 4000 | 997 3
) 50 | 1000 | 493 | 101
100 | 2000 | 983 16
200 | 4000 | 999 1

1000 0.10932 | 0.00013
1000 0.05647 | 0.00010
911 8.49444 | 0.01740
1000 0.19531 | 0.01313
1000 0.07708 | 0.00992
763 18.06490 | 0.09350
1000 0.50227 | 0.06929
1000 0.19478 | 0.05165

35 50 | 1000 0 0 0 42.26501 | 1.49096
100 | 2000 | 13 2 15 28.75040 | 0.83021
200 | 4000 | 901 0 901 1.74922 | 0.52387

12 1 0.01 | 50 | 1000 6 2
100 | 2000 | 789 | 151
200 | 4000 | 970 28
1 50 | 1000 0 4
100 | 2000 | 781 | 170
200 | 4000 | 973 25
5 50 | 1000 3 3
100 | 2000 | 798 | 147
200 | 4000 | 999 1
45 50 | 1000 0 0
100 | 2000 | 14 3
200 | 4000 | 915 25

932 14.44258 | 0.00015
1000 0.21749 | 0.00011
1000 0.05420 | 0.00009
908 17.25881 | 0.01548
1000 0.39322 | 0.01155
1000 0.08424 | 0.00863
T 41.15342 | 0.08249
1000 0.81430 | 0.06055
1000 0.19478 | 0.05165

0 119.84890 | 2.18342

18 26.23490 | 1.05687
942 1.53381 | 0.62584

coolocwnorho|lorrlocoooocoS|loo oo Blooo|jlooolooc oo o olf

w wo w w ot o

] R e it L VR R el R e A R N
= = ) Do
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Table3. Case 2 in Example 2, with n = 2 and 0727 = C% %. The other
notations are the same in Table 1.

Correct MSPE 0,2]
513 4.75287 | 0.00011
1000 0.04985 | 0.00006
1000 0.02725 | 0.00003
217 7.69615 | 0.01061
994 0.09892 | 0.00578
1000 0.03679 | 0.00315
2 11.83424 | 0.05303
711 0.45313 | 0.02891
1000 0.08263 | 0.01576
0 15.98425 | 0.15908
2 9.95848 | 0.08674
971 0.48686 | 0.04729
610 3.65043 | 0.00010
1000 0.05153 | 0.00005
1000 0.02699 | 0.00003
429 5.37950 | 0.00892
999 0.07926 | 0.00478
1000 0.02730 | 0.00256
67 9.36974 | 0.04462
980 0.33916 | 0.02391
1000 0.07646 | 0.01281
0 20.92983 | 0.31231
1 13.52782 | 0.16736
859 1.35893 | 0.08969

¢ C n p E E+1
8 | 0.01 | 50 | 1000 | 507
100 | 2000 | 1000
200 | 4000 | 1000
1 50 | 1000 | 214
100 | 2000 | 994
200 | 4000 | 1000
5 50 | 1000 2
100 | 2000 | 711
200 | 4000 | 1000
15 50 | 1000 0
100 | 2000 2
200 | 4000 | 971
10 | 0.01 | 50 | 1000 | 466
100 | 2000 | 990
200 | 4000 | 1000
1 50 | 1000 | 343
100 | 2000 | 982
200 | 4000 | 997
5 50 | 1000 | 52
100 | 2000 | 958 21
200 | 4000 | 1000 1
35 50 | 1000 0 0
100 | 2000 1 0
200 | 4000 | 851 8

=

w = = )
H[\DwoooOH[\DOOQQOOHOOOOOOOOOOOC&J—J\—D
=
+
w
t
+
B
t

Ut

olwThlos Jooojlooojloo wo ow

O O OO OO IONOO WO OO Ooooo oo o

[\3D\]@O@\]OOOOOHOO@OOBOOOOOOOOOOOO

12 | 0.01 | 50 | 1000 | 64 20 10 5973 5.72614 | 0.00008
100 | 2000 | 834 | 122 ) 999 0.09410 | 0.00004

200 | 4000 | 980 19 0 1000 0.02973 | 0.00002

1 50 | 1000 | 59 17 14 8 466 7.44604 | 0.00795
100 | 2000 | 855 | 105 28 4 1000 0.10421 | 0.00421

200 | 4000 | 978 22 0 0 1000 0.03700 | 0.00223

5 50 | 1000 | 12 10 2 3 97 12.88040 | 0.03976
100 | 2000 | 803 | 137 35 10 4 993 0.31848 | 0.02106

200 | 4000 | 969 30 1 0 0 1000 0.07507 | 0.01116

40 50 | 1000 0 0 0 0 0 0 26.24179 | 0.31811
100 | 2000 7 7 0 0 0 14 11.19198 | 0.16851

200 | 4000 | 816 | 144 2 0 0 962 1.10595 | 0.08927
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Appendix

Before we prove (3.4), three lemmas are needed first:

2

Lemma 1. Assume (C2), max 1|37 (wuwij — 045)] = 0,(\/ £=) and
1<ij<p " "
2

q1
max LY (Tamy — 0wig)| = 0p(\) 5).

2

Lemma 2. Assume (C1)-(C4) max LIS Erwal = Op(1) ).
<p

1<

Lemma 3. Assume (C1)-(C4), (3.1) and K, = O( /%),

pa
Lo nax [[R(J) = R(J)|| = op(1), (A.1)
AH—1 _ p-1 _
1gé?%§xn||R (J) = R (J)|[ = 0p(1), (A.2)
H—1 e
max |[R(D)]| =07 = 0,(0) (A.3)

Proof of Lemma 1. Given M > 0,

2
P(max >0 (wywy — o55)| > M\/ %)

1<i,j<p

< M*2Q2nq2p’2E(1r<naX a2t (wawey — oy5) )%
<4, <p

_ 1
<M 1I§rzl'3>§(pE(\/_ﬁ| > (wewy; — 035)]) %,

it follows from (C2) that

2
q
max L3 (wgwy — o) = Op(\ B5)
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Similarly,

A
12?%'2%% 7o)l = on(|] 5.

Proof of Lemma 2. Note that

(maX | Zt L §Fwil)

1<i<p ™

= B(max | 37 [6 — 87 (g — 20 (30 + ) 7 (21 + 7)) (w1 + 10)|)

1<i<p ™

< BE(max | >0 Guyl)

1<i<p ™

+ E(max L3 e (B 4 X))

+ E(max 1|Zt IBTZ (Ze + 2)  tmmul)

1<i<

+ B(max 1| 50y B8 (S + T) i — B8 (S + 2y) o)

1<i<

= F1 + By + B3+ Ey.

Since
B(max 3 71, &wal)”
< pmax B 320 Gwl)™
< pmax n " E( sup ]Zt L Gwg])
1<i<p 1<k<n
a1
<plr£1§1<};n BKE(Y - wi)
a1
= pmax n” TKE(LY w})?

<pn~TK  max  Elwy|®,
1<i<p,1<t<n

where the third inequality comes from Lemma 2 in Wei (1987), K is a positive
constant depends only on ¢; and Cy in (C1); the last inequality comes from

Jensen’s inequality. From (C1), it follows that
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Since

By = B(max [ £ X0, 871 - 55(S. + 5,) i)

< B IhE(max |5 378 miswil),

by (C1) and similar arguments in the derivation of (A.4), it follows that

2

E( max [X 30 myzyl) = O( pﬁ) combined it with (C3) and (C4), it

1<i,j<p "

follows that

E, = O0(\| %) (A5)
n
Similarly,
By =0(\/ 20, (A.6)
n
Finally,

Ey=E {{g@fgx [ 2 BT T — 2 (B + %) 7 (o + an)H}

=K { max |+ 37 BT [ — E(ene) — By(Se + Xy)

1<i<p

X (zi — E(zwn) + e — E(Qmm'))]\}

{fgfg; |— o B Twywy — E(wwy) — 2wy + E(2iwy) — 2o

=X (B0 + Xa) Hwiwy — E(wywy) — 24 — Qt%:z‘)”}

< [18*IL[E( max [ 2ot (weiwy; — 035)])

— Mt

+2E( maX |1 Zt 177tjwtz|)] + HBHI ( maX ’1 Zt 1(513m$t] Ua:ij)’)

1<i,j

—o(\2). (A7)
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The last equality comes from Lemma 1, (A.5) , (C3) and (C4). By (A.4)-
(A.7) and Markov’s inequality, the proof of Lemma 2 is complete.

Proof of Lemma 3. For (A.1), note that

max ||R(J) = R(J)|| < Ku max 3| 370 (waws; — oy)].

1<#(J)<Kn 1<4,j<p ™
2
Since K, = O(, [75) and max |3 (wawy — 0y)] = o,(\/ 2-) by
pal 1<ij<p "

Lemma 1, we have the desired conclusion. By (A7) and (A8) in Ing and Lai
(2011) and (A.1), we have (A.2). Furthermore, since max [|[R7'(J)|| <

1<#(J)<Kn
61 by (3.1),

-1 _5l< —~1( 7y _ p-1
1gﬁ%§Kn|lR Y| =6~ 1<ﬁ%§Kn||R (J) = R,

so, we have (A.3), and the tools for proving (3.4) are ready.

Proof of (3.4). Since by Lemma 1, nz||w;|| & o5 > lrgm loii|, as n — o0,

Vi=1,2,...,n, it suffices to prove that Ve > 0,ds > 0 s.t.

l
a1
P((M):#(I})lgii 11¢Jn|2t 1€twtzJ|>SU \/ =) <k
where 0* = min |o|. Notice that
1<i<p

|Zt 1€t AtzJ|

(J,3): #(J)<m 1i¢J "

< max _| Zt 1€twt2|

1<i<p ™
+ G S Gl )R )G i wi ()
max (IR oy &rwe( )]

(i) #()<Kn—1,i¢J

= S1n+ Som + Ss s
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where wyg. ; = wy; — 7 (J)R™(J)wy(J). Since

S3n < max I—Zé}wm max |[R7H ()%,

1<i<p N 1<#(N)<Kn,i¢J

2

by Lemma 2 and (3.1), S1,, S5, are O,(\/ £-). Notice that

< H—1 -1 )
527n_(lgé?%§Kn||R (J)||)Kn(1+1S#(5r)12]>§mw|ll% (D)D)

X(12]§p| Zt 1 WeiWej — Uz]|)(1r£1a<x| Zt L Sfwl),

2

so by Lemma 1-3, (3.1) and K,, = O(_ /%), it follows that Sa, = 0,(1/ &),
pql
and the proof of (3.4) is complete.

Proof of (4.4). By the proof of (3.4), it follows that

P(|B,| > 6L,,D,) <P Ly eopl > 9L
(|Bn| = 0Ly, Dy) < (lg#(J)rrglgm}é—l,i¢J|nZt:1 twtz,J|—9 n)

= o(1). (A.8)

Since
= (7T E — 0f) + (s Brw) (L= Hy ) (X Biwi)
+20 N (g, Brw) (1= Hj )& —n~ 1€ Hy £,
it follows that
P(|Ca| > 0,D,) < P(|267T¢ — 02| > §)
+P([U1( max LIS wgwy — oy + max [o;() > ‘)

1<4,5<
= 1 ~
FPRICINE S gl )
(2 i
+P(1S§%§mOIIR L) ||mo rg?x( S Ew)? > 0)
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the equality comes from (C1), (C7), (C8), (A.8), Lemma 1-3. Note that

P(A, <%, D,) < PO\min(R(J;)) < %, D,)
)

A

< P( max HI:?(J)—R(J)H>é)

1<#(J)<mo

=o(1), (A.10)

the equality comes from Lemma 3, and
P(|E,| > 0L2, D,,)
< PO pass 1551 mass 4

+P(||U]:2 (Sz,n + S30) > §12)
= o(1). (A.11)

0
LI wywg — o] + 1g3>§<p|0ij|) > SL2)

where S5 ,,, Ss, are the same as those in the proof of (3.4), the equality
comes from (C1), (C3), (C7), Lemma 1 and the proof of (3.4). By
(A.8)-(A.11), the proof of (4.4) is complete.

Proof of (4.7). Since 3 a constant X\ > 0 and (, — 00 s.t.

~ ~ 2
n(l —exp(=n"w,(k = k)pn)) _ < a2
= > Amin{(npa )2, w,pa
P = {(npe)2, wp'}

= (up, (A.12)

it follows from (A.12) that

~

P((k — k) (an + by) > 0n(1 — exp(—n~"'wu(k — E)pn ),k > k)
< P(||R7(Ji,)|| max (n=2 ), wugf)? > §Gp™)

1<i<p
+P(IR () 1n(San + Sl > 5Gup1)
=o(1)

the equality comes from Lemma 2, 3 and proof of (3.4). Note that

P((gs, Biw)" (Hjy — Hj ) (s Biwi)
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~ ~ 2

> 0n(1 — exp(—n " w,(k — k)pn ), k > k)

POIIE mas 2SS0y wawny — o] + mas [oy)
>9m1n{\/7n wp‘h Mk — l;)];)>]~€)
PO max 35wy — ol + max Jol) > 0mingy/ 22, £2})
=o(1), (A.14)
and

(S, i) (H, — H; €| 2 0n(1—cxp(—n~"w, (k- R)pin ), k> F)

< PIUI112(S + S5.0) > Gmin{y/ 2 L))
= o(1). (A.15)

and similar to (A.14),(A.15), it follows that

P((O> " Brw)" (1 — Hjl_c)(z Brwy) > On,k > k) = o(1), (A.16)

¢ J; ¢ J;
P> Brw)" (I = Hj )& = On,k > k) = o(1). (A.17)
¢ J;

So, by (A.13)-(A.17), the proof of (4.7) is complete.
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