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i 

 

摘要 

 
    我們使用一個叫做正交化貪婪演算法的快速逐步迴歸對高維度時間序列並帶有測量誤差

的模型做模型選擇。在一個弱稀疏的條件下，我們推導出了正交化貪婪演算法預測誤差的收

斂速度。在一個強稀疏的條件下，發展出一套擁有一致性的選模準則。 

關鍵詞:高維度、測量誤差、正交化貪婪演算法、稀疏性、時間序列 
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ii 

 

Abstract 
 

     We use a fast stepwise regression method, called orthogonal greedy algorithm (OGA) to select 

variables for high-dimensional time series model with measurement errors. Under a weak sparsity 

condition, we derive a convergence rate of OGA, which is expressed in terms of the number of 

iterations, the sample size and the order of the moment imposed on the error process. Under a strong 

sparsity condition, we develop a consistent model selection procedure using OGA and a 

high-dimensional information criterion. 

Keywords: High-dimensional, measurement error, OGA, sparsity, time series. 
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1 Introduction

Consider the simple linear regression without intercept

y = β˜Tx˜+ ξ,

where x˜ = (x1, x2, ..., xp)
T is a p-dimensional random vector satisfying E(x˜) =

0˜ = (0, 0, ..., 0)T and E(x˜x˜T ) = Σx. β˜ = (β1, β2, ..., βp)
T is a p-dimensional

constant vector. E(ξ) = 0, E(ξ2) = σ2
ξ > 0, and x˜ and ξ are independent.

Assume that w˜ = x˜+η˜ is observed instead of x˜, where w˜ = (w1, w2, ..., wp)
T ,

η˜ = (η1, η2, ..., ηp)
T is a vector of measurement errors, and y? = y + ηy is ob-

served instead of y, ηy is a measurement error, where E(η˜) = 0˜, E(η˜η˜T ) = Ση

and η˜ is independent of (x˜, ξ), E(ηy) = 0, E(η2
y) = σ2

ηy and ηy is inde-

pendent of (x˜, η˜, ξ). To make complicated things simple, we assume that

Ση = diag(σ2
η1
, σ2

η2
, ..., σ2

ηp) is a diagonal matrix. Note that since ηy can be

absorb into ξ, we still denote y as y? for simplicity and view ξ as the random

errors after absorbing ηy.

If we regress y on w˜ , then it follows that

y = β˜?Tw˜ + ξ?,

where β˜? = β˜ − U˜ and U˜ = (Σx + Ση)
−1Σηβ˜, noting that β˜? = β˜ if

∀i = 1, 2, ..., p, σηi = 0.

Let (yt, w˜Tt ), t = 1, 2, ..., n, be observations, where w˜ t = (wt1, wt2, ..., wtp)
T .

We allow (yt, x˜Tt , η˜Tt , ξt) be a stationary time series and p >> n. When p is

larger than n, there are computational difficulties in estimating the regres-

sion coefficients by standard regression methods. Ing and Lai (2011) propose

1
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the orthogonal greedy algorithm (OGA) to circumvent the computation in

high dimensional inversion matrix. They derive the convergence rate of OGA

and provide a consistent model selection procedure for high-dimensional time

independent models. Ing and Huang (2016) generalize the results to multi-

variate time series model setting and relax the moment bound assumptions

from exponential moment bounds to polynomial moment bounds. However,

none of them consider measurement errors in their models. Since we often

face data with measurement errors that cannot be ignored in many applica-

tions, recently, high-dimensional models with measurement errors has been

widely studied. Loh and Wainwright (2012) propose a non-convex modifica-

tion of Lasso for doing high-dimensional models with measurement errors and

missing data, they also consider a time series model setting but only the cases

within class of VAR(1) models with an upper restricted eigenvalue condition

for sample covariance matrix. Datta and Zou (2016) propose a modification

which is called Convex Conditioned Lasso (CoCoLasso) to circumvent the

problem of non-convexity and the method can handle with a general class

of corrupted data, but they only develop theories of the case that the true

regressors are fixed design and there is no theory of model selection for a time

series model setting. Belloni, Rosenbaum and Tsybakov (2014), (2016) use

a Dantzig Selector type method named matrix uncertainty (MU) selector for

doing high-dimensional model with measurement errors, but they do not con-

sider a time series model setting. To our best knowledge, the existing papers

that are related with high-dimensional model with measurement errors sel-

dom consider a time series setting additionally, and none of them use greedy

algorithm to do model selection with the previous model settings. This paper

focuses on the OGA method and generalizes the results in Ing and Lai (2011)

and Ing and Huang (2016) to a new dimension: high-dimensional time series

2
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models with measurement errors under polynomial moment bound assump-

tions.

In this paper, We provide an upper bound of the number of iterations and

derive the uniform convergence rate of empirical prediction error of OGA un-

der a weak sparsity condition. We prove the sure screening property of OGA

under a strong sparsity condition. We propose an information criterion to

do model selection, together with a trimming method, the whole procedure

is shown to achieve the oracle property. We also provide simulation studies

to show that with proper order of moment bounds, OGA+HDBIC+Trim

successfully identifies the smallest correct model with high ratios in some

general model settings. Although some additional conditions are needed, the

necessary conditions for OGA to do consistent model selection for models

with measurement errors remain simple.

The rest of this paper is organized as follows: in Section 2, we intro-

duce OGA and noiseless OGA. In Section 3, we derive the convergence rate

of OGA. In Section 4, we prove the sure screening property of OGA, and

introduce our model selection criterion along the OGA path which is called

high-dimensional information criterion (HDIC). We also proposed a trimming

method to exclude redundant variables and prove that OGA+HDIC+Trim

achieves model selection consistency. In Section 5, we present simulation

studies to illustrate the performance of OGA+HDIC+Trim.

2 OGA and Noiseless OGA

In this secition, we briefly introduce OGA and noiseless OGA that are

proposed by Ing and Lai (2011).

3
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Denote ŷk(w˜) as a sequence of linear approximations of the regression

function y(w˜) = β˜?Tw˜ . Initializing with ŷ0(·) = 0, it computes the residuals

U
(k)
t := yt − ŷk(w˜ t), 1 ≤ t ≤ n, at the end of the kth iterations and chooses

wt,ĵk+1
on which U

(k)
t is regressed, such that

ĵk+1 = arg min
1≤j≤p

n∑
t=1

(U
(k)
t − β̃

(k)
j wtj)

2,

where β̃
(k)
j =

∑n
t=1 U

(k)
t wtj∑n

t=1 w
2
tj

. We update

ŷk+1(w˜ t) = ŷk(w˜ t) + β̂
(k)

ĵk+1
w⊥
t,ĵk+1

where β̂
(k)

ĵk+1
=

∑n
t=1 U

(k)
t w⊥

t,ĵk+1∑n
t=1 w

⊥2
t,ĵk+1

, w⊥
t,ĵk+1

is the tth component of vector w⊥
ĵk+1

=

wĵk+1
− ŵĵk+1

, ŵĵk+1
is the projection of wĵk+1

into the linear space spanned

by (wĵ1
,wĵ2

, ...,wĵk
), where wj = (w1j, w2j, ..., wnj)

T . The orthogonalization

of the predictor variables allows us to use componentwise linear regression

to compute OLS, thereby circumventing the difficulties with computing the

inverse of high-dimensional matrix.

Noiseless OGA is similar to OGA but replaces yt by its mean y(w˜ t). In

the next section, we’ll use noiseless OGA to derive the convergence rate of

the empirical prediction error of OGA. More details of OGA and noiseless

OGA can be found in Ing and Lai (2011).

3 Uniform Convergence Rate of Empirical Pre-

diction Error

In this section, we derive the convergence rate for OGA in linear re-

gression time series models with measurement errors in which the number of

4
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regressors is allowed to be much larger than the number of observations.

According to OGA, ŷm(w˜ t) = w˜Tt (Ĵm)β̂˜(Ĵm), where Ĵm is the index set

of the variable selected by OGA after m iterations, w˜ t(J) = (wti, i ∈ J)T

and β̂˜(J) = (
∑n

t=1 w˜ t(J)w˜Tt (J))−1
∑n

t=1w˜ t(J)yt is the LSE based on model

J. Let Kn denote a prescribed upper bound on the number m of OGA it-

erations. To provide the uniform convergence rate of the empirical norm

1
n

∑n
t=1(ŷm(w˜ t)− β˜?Tw˜ t)2, 1 ≤ m ≤ Kn, we make the following assumptions

below.

Assume {ξt}nt=1 is a martingale difference sequence with respect to an

increasing sequence of σ-fields {Ft}, {ηti}nt=1 , i = 1, 2, ..., n are martingale

difference sequences with respect to an increasing sequence of σ-fields
{
F̃t
}

,

wti, i = 1, 2, ..., n, are Ft−1-measurable, xti, i = 1, 2, ..., n, are F̃t−1-measurable

and there exist q1, q2 with q2 > q1 ≥ 2 s.t.

(C1) max
1≤t≤n,1≤i≤p

E|xti|2q1 = O(1),

sup
1≤t<∞,1≤i≤p

E[|ηti|2q1|F̃t−1] ≤ C1 <∞ a.s., for some C1 > 0,

sup
1≤t<∞

E[|ξt|q1|Ft−1] ≤ C2 <∞ a.s., for some C2 > 0,

(C2) max
1≤i,j≤p

E| 1√
n

∑n
t=1(wtiwtj − σij)|2q2 = O(1),

max
1≤i,j≤p

E| 1√
n

∑n
t=1(xtixtj − σxij)|2q2 = O(1),

where σij = E(wtiwtj), σxij = E(xtixtj).

Remark. If wtj has a linear representation

wtj =
∞∑

k=−∞

a(k)αj(t− k)

5
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where (αj(t),Ft) are martingale difference sequences with −∞ < t <∞ and

E[αj(t)
2|Ft−1] = 1

and there exists a positive constant Cq2 s.t.

sup
−∞<t<∞

E[αj(t)
4q2|Ft−1] ≤ Cq2

with the spectral density function of wtj, denoted fj is square integrable,

max
1≤j≤p

∞∑
k=−∞

[E(wtjwt+k,j)]
2 = max

1≤j≤p

1

2π

∫ π

−π
f 2
j (λ)dλ = O(1).

Then, by (2.10) in Findley and Wei (1993), the first condition in (C2) holds.

(C3) ||β˜||1 <∞.

This assumption is the weak sparsity condition on the uncontaminated re-

gression coefficients.

(C4) ||U˜ ||1 = ||(Σx + Ση)
−1Σηβ˜||1 <∞.

This assumption and (C4) assure the weak sparsity condition on the regres-

sion coefficients contaminated by measurement errors.

Remark. There are many ways to achieve (C4), for example, if the values

of measurement errors are restricted by the number of regressors, say

max
1≤i≤p

σ2
ηi

= O( 1√
p
), then (C4) holds, since ||β˜?||1 = ||β˜− (Σx + Ση)

−1Σηβ˜||1 ≤
||β˜||1(1 +

√
p

max
1≤i≤p

σ2
ηi

λmin(Σx)+ min
1≤i≤p

σ2
ηi

). Another important example is the case that

(xt1, xt2..., xtp) has special covariance structure, for example, uncorrelated

structure. But, in general, (C4) does not hold without further conditions.

(C5) n

p
2
q1

→∞ as n→∞.

6
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The following theorem gives the rate of convergence, which holds uniformly

over 1 ≤ m ≤ Kn, for the empirical prediction error of OGA. The uni-

form convergence rate varies with the prescribed order of moments q1 in

(C1). When the order of moments q1 is smaller, the uniform convergence

rate becomes larger due to the weaker moment assumptions. Define R(J) =

E(w˜1(J)w˜1(J)T ) and γ˜i(J) = E(w1iw˜1(J)).

Theorem 1. Assume (C1)-(C5). Suppose Kn = O(
√

n

p
2
q1

), and

min
1≤#(J)≤Kn

λmin(R(J)) > δ, max
1≤#(J)≤Kn,i/∈J

||R−1(J)γ˜i(J)||1 < C? <∞, (3.1)

for some δ, C? > 0. Then

max
1≤m≤Kn

(
n−1

∑n
t=1(ŷm(w˜t)−β˜?Tw˜t)2
m−1+mn−1p

2
q1

)
= Op(1).

Proof.

1
n

∑n
t=1(ŷm(w˜ t)− β˜?Tw˜ t)2

= 1
n
(Y (w)−HĴm

Y )T (Y (w)−HĴm
Y )

= 1
n
Y T (w)(I −HĴm

)Y (w) + 1
n
(Y − Y (w))THĴm

(Y − Y (w)),

where Y (w) = (w˜T1 β˜?, w˜T2 β˜?, ..., w˜Tnβ˜?)T , Y = (y1, y2, ..., yn)T , and HJ is a

projection matrix project vectors into the linear space spanned by (wi, i ∈ J),

where wi = (w1i, w2i, ..., wni)
T . Let

µJ,i = Y T (w)(I−HJ )wi

n
1
2 ||wi||

, µ̂J,i = Y T (I−HJ )wi

n
1
2 ||wi||

,

where || · || = || · ||2 denotes the L2-norm in this paper. Consider two events

An(k) =

{
max

(J,i):#(J)≤k−1,i/∈J
|µ̂J,i − µJ,i| ≤ s(

√
p

2
q1

n
)

}
,

Bn(k) =

{
min

0≤i≤k−1
max
1≤j≤p

|µĴi,j| > ξ̃0s(

√
p

2
q1

n
)

}
,

7
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where s is a positive constant independent of n and k, ξ̃0 = 2/(1 − ξ0), for

0 < ξ0 < 1.

On An(m) ∩Bn(m), for 1 ≤ q ≤ m,

|µĴq−1,ĵq
| ≥ −|µ̂Ĵq−1,ĵq

− µĴq−1,ĵq
|+ |µ̂Ĵq−1,ĵq

|

≥ −2s

√
p

2
q1

n
+ max

1≤j≤p
|µĴq−1,j

|

≥ ξ0 max
1≤j≤p

|µĴq−1,j
|.

This is the generalization of noiseless OGA in the Appendix B in Ing and

Lai (2011). So, by Lemma B1 in Ing and Lai (2011), (C3), and (C4),

1

n
Y T (w)(I −HĴm

)Y (w) = Op(
1

1 +mξ2
0

). (3.2)

On Bc
n(m), by (C3), (C4) and Lemma 1 in Appendix,

1
n
Y T (w)(I −HĴm

)Y (w) ≤ min
1≤i≤m−1

1
n
Y T (w)(I −HĴi

)Y (w)

≤ max
1≤j≤p

||β˜?||1 ||wj ||n1/2 ξ̃0s

√
p

2
q1

n

= Op(
1

m
). (3.3)

It remains to prove that ∀ε > 0,∃s > 0 s.t.

P (Acn(m)) ≤ ε, (3.4)

and the proof is shown in the Appendix.

So, by (3.2)-(3.4), we have

1

n
Y T (w)(I −HĴm

)Y (w) = Op(
1

m
). (3.5)

On the other hand,

8
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1
n
(Y − Y (w))THĴm

(Y − Y (w))

= 1
n
ξ?THĴm

ξ?

≤ ||R̂−1(Ĵm)||m max
1≤i≤p

( 1
n

∑n
t=1 ξ

?
twti)

2

= Op(
mp

2
q1

n
), (3.6)

where ξ? = (ξ?1 , ξ
?
2 , ..., ξ

?
n)T . Theorem 1 follows form (3.5) and (3.6).

4 Sure Screening Property and Model Selec-

tion Consistency

In the first part of this section, we prove the sure screening property of

OGA under a strong sparsity condition:

(C6) ∃Ln satisfies Ln → 0 and
√

n

p
2
q1

L2
n → ∞ as n → ∞ s.t. for any

βj 6= 0, |βj| ≥ (
max
1≤i≤p

σ2
ηi
||β˜||1

λmin(Σx)+ min
1≤i≤p

σ2
ηi

) + Ln.

Theorem 2. Assume (C1)-(C6), (3.1) and Kn = O(
√

n

p
2
q1

). Then lim
n→∞

P (N ⊆

ĴKn) = 1, where N = {1 ≤ j ≤ p : βj 6= 0} denote the set of relevant input

variables.

Proof. Let m0 = baL−2
n c = o(Kn), for some positive constant a. Consider a

event

A?n(k) =

{
max

(J,i):#(J)≤k−1,i/∈J
|µ̂J,i − µJ,i| ≤ sL2

n

}
,

for some positive constant s independent of n and k. By (3.4), we have

∀s > 0, lim
n→∞

P (A?n
c(Kn)) = 0, which implies lim

n→∞
P (A?n

c(m0)) = 0. So, by

similar arguments in the proof of Theorem 1, lim
n→∞

P (Fn) = 0, where

9
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Fn = { 1
n
Y T (w)(I −HĴm0

)Y (w) > Cm−1
0 },

for some C > 0. By (C3), (C6), it follows that #(N) = O(1), yielding

#(N ∪ Ĵm0) = o(Kn). So, on {N ∩ Ĵ cm0
6= ∅}, when n is large,

1
n
Y T (w)(I −HĴm0

)Y (w)

= 1
n
β?T

N∩Ĵcm0

wT
N∩Ĵcm0

(I −HĴm0
)wN∩Ĵcm0

β?
N∩Ĵcm0

≥ (min
j∈N

β?j
2) min

1≤#(J)≤Kn
λmin(R̂(J))

≥ bL2
n,

for some b > 0, where wN∩Ĵcm0
= (wi, i ∈ N ∩ Ĵ cm0

), β?
N∩Ĵcm0

= (β?i , i ∈

N ∩ Ĵ cm0
)T . The last inequality above follows from Lemma 3, (C6) and (3.1).

By choosing a in m0 = baL−2
n c large enough, we have bL2

n > Cm−1
0 , and the

proof of Theorem 2 is complete.

To choose the smallest number of iterations that include all relevant

variables, we propose a high-dimensional information criterion (HDIC). De-

fine σ̂2
J = n−1

∑n
t=1(yt − ŷt;J)2, where ŷt;J denotes the fitted value of yt

when Y = (y1, y2, ..., yn)T is projected into the linear space spanned by wj,

j ∈ J 6= ∅, setting ŷt;J = 0 if J = ∅. Let

HDIC(J) = n log σ̂2
J + #(J)wnp

2
q1 ,

k̂n = arg min
1≤k≤Kn

HDIC(Ĵk),

wn →∞, wnp
2
q1 = o(nLn

4), (4.1)

k̃n = min{k : 1 ≤ k ≤ Kn, N ⊆ Ĵk}(min ∅ = Kn).

Note that k̂n is the number of OGA iterations we choose according to HDIC,

and k̃n is the minimal number of iterations that includes all relevant regres-

sors along an OGA path.

10
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To achieve consistency of model selection under (C6), the strong sparsity

condition, we need to assume the contaminated regression coefficients con-

verges to the uncontaminated regression coefficients in an appropriate rate,

which means the measurement errors must converges to 0 in probability with

some rate:

(C7) ||U˜ ||1 = O(

√
p

2
q1

n
),

note that max
1≤i≤p

σ2
ηi

= O( 1√
p

√
p

2
q1

n
) assures (C7). If the regressors are uncorre-

lated, then max
1≤i≤p

σ2
ηi

= O(

√
p

2
q1

n
) assures (C7), which is weaker than general

conditions.

In addition, we assume a weak dependency on the square of regression errors:

(C8) max
1≤t≤n

E(ξ4
t ) = O(1) and E(ξ2

t ξ
2
t+h)− σ4

ξ = o(1) as h→∞,

where σ2
ξ = E(ξ2

t ), ∀t = 1, 2, ..., n.

This assumption is used to derive weak law of large numbers of ξ2
t . The fol-

lowing theorem proves that k̂ approaches k̃ when n grows in probability sense.

Theorem 3. With the same notation and assumptions as in Theorem 2,

suppose (3.1), (C7) and (C8) holds, Kn = O(
√

n

p
2
q1

). Then lim
n→∞

P (k̂n =

k̃n) = 1.

Proof. For notational simplicity, dropping the subscript n in k̃n and k̂n. Let

Dn = {N ⊆ Ĵm0} = {k̃ ≤ m0}, by Theorem 2, lim
n→∞

P (Dn) = 1. On {k̂ < k̃},
by definition of k̂, it follows that

exp(HDIC(Ĵk̂)/n) ≤ exp(HDIC(Ĵk̃)/n),

11
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so,

σ̂2
Ĵk̃−1
− σ̂2

Ĵk̃
≤ σ̂2

Ĵk̂
− σ̂2

Ĵk̃
≤ σ̂2

Ĵk̃
{exp(n−1wnk̃p

2
q1 )− exp(n−1wnk̂p

2
q1 )}. (4.2)

Note that

n−1{
∑n

t=1(yt − ŷt;Ĵk̃−1
)2 −

∑n
t=1(yt − ŷt;Ĵk̃)

2}
= n−1(β?

ĵk̃
wĵk̃

+
∑

l /∈Ĵk̃
β?lwl + ξ?)T (HĴk̃

−HĴk̃−1
)(β?

ĵk̃
wĵk̃

+
∑

l /∈Ĵk̃
β?lwl + ξ?)

=
{β?
ĵ
k̃

wT
ĵ
k̃

(I−HĴ
k̃−1

)wĵ
k̃

+wT
ĵ
k̃

(I−HĴ
k̃−1

)ξ?}2

nwT
ĵ
k̃

(I−HĴ
k̃−1

)wĵ
k̃

+n−1(
∑

l /∈Ĵk̃
β?lwl)

T (HĴk̃
−HĴk̃−1

)(
∑

l /∈Ĵk̃
β?lwl)

+2n−1(
∑

l /∈Ĵk̃
β?lwl)

T (HĴk̃
−HĴk̃−1

)(β?
ĵk̃
wĵk̃

+ ξ?).

By (4.2),

β?2
ĵk̃
Ân + 2β?

ĵk̃
B̂n + Â−1

n B̂2
n + D̂n + 2Ên

≤ λn−1wnp
2
q1m0(Ĉn + σ2

ξ?) on {k̂ < k̃}
⋂

Dn , (4.3)

for some λ > 0, where

Ân = n−1wT
ĵk̃

(I −HĴk̃−1
)wĵk̃

B̂n = n−1wT
ĵk̃

(I −HĴk̃−1
)ξ?

Ĉn = σ̂2
Ĵk̃
− σ2

ξ?

D̂n = n−1(
∑

l /∈Ĵk̃
β?lwl)

T (HĴk̃
−HĴk̃−1

)(
∑

l /∈Ĵk̃
β?lwl)

Ên = n−1(
∑

l /∈Ĵk̃
β?lwl)

T (HĴk̃
−HĴk̃−1

)(β?
ĵk̃
wĵk̃

+ ξ?).

In the Appendix, it is shown that ∀θ > 0,

P (Ân <
vn
2
, Dn)+P (|B̂n| ≥ θLn, Dn)+P (|Ĉn| ≥ θ,Dn)+P (|Ên| ≥ θL2

n, Dn) = o(1),

(4.4)

where vn = min1≤#(J)≤m0 λmin(R(J)). From (4.3), (4.4), (C6), lim
n→∞

P (Dn) = 1, D̂n,

Â−1
n B̂2

n ≥ 0, and θ is arbitrary, it follows that P (k̂ < k̃) = o(1).

On {k̂ > k̃}, by definition of k̂, it follows that

12
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σ̂2
Ĵk̂

exp(n−1wnk̂p
2
q1 ) ≤ σ̂2

Ĵk̃
exp(n−1wnk̃p

2
q1 ),

so, it can be derived that

ξ?T (HĴk̂
−HĴk̃

)ξ?

+(
∑

l /∈ĵk̃
β?lwl)

T (HĴk̂
−HĴk̃

)(
∑

l /∈ĵk̃
β?lwl)

+2(
∑

l /∈ĵk̃
β?lwl)

T (HĴk̂
−HĴk̃

)ξ?

≥ {ξ?T (I −HĴk̃
)ξ?

+(
∑

l /∈ĵk̃
β?lwl)

T (I −HĴk̃
)(
∑

l /∈ĵk̃
β?lwl)

+2(
∑

l /∈ĵk̃
β?lwl)

T (I −HĴk̃
)ξ?}

×(1− exp(−n−1wn(k̂ − k̃)p
2
q1 )). (4.5)

Let Fk̂,k̃ denote the n× (k̂ − k̃) matrix whose column vectors are wj,

j ∈ Ĵk̂ − Ĵk̃. Since

ξ?T (HĴk̂
−HĴk̃

)ξ?

= ξ?T (I −HĴk̃
)Fk̂,k̃{F T

k̂,k̃
(I −HĴk̃

)Fk̂,k̃}−1F T
k̂,k̃

(I −HĴk̃
)ξ?

≤ ||R̂−1(ĴKn)||||n− 1
2F T

k̂,k̃
(I −HĴk̃

)ξ?||2

≤ ||R̂−1(ĴKn)||(2||n− 1
2F T

k̂,k̃
ξ?||2 + 2||n− 1

2F T
k̂,k̃
HĴk̃

ξ?||2)

≤ 2(k̂ − k̃)(ân + b̂n),

where

ân = ||R̂−1(ĴKn)|| max
1≤i≤p

(n−
1
2

∑n
t=1wtiξ

?
t )

2,

(4.6)

b̂n = ||R̂−1(ĴKn)|| max
1≤#(J)≤k̃,i/∈J

(n−
1
2

∑n
t=1 ˆwti;Jξ

?
t )

2,

13



doi:10.6342/NTU201700925

and it is shown in the Appendix that

P ((k̂ − k̃)(ân + b̂n) ≥ θn(1− exp(−n−1wn(k̂ − k̃)p
2
q1 )), k̂ > k̃)

+P ((
∑

l /∈Ĵk̃
β?lwl)

T (HĴk̂
−HĴk̃

)(
∑

l /∈Ĵk̃
β?lwl) ≥ θn(1−exp(−n−1wn(k̂−k̃)p

2
q1 )), k̂ >

k̃)

+P (|(
∑

l /∈Ĵk̃
β?lwl)

T (HĴk̂
−HĴk̃

)ξ?| ≥ θn(1− exp(−n−1wn(k̂− k̃)p
2
q1 )), k̂ > k̃)

+P ((
∑

l /∈ĵk̃
β?lwl)

T (I −HĴk̃
)(
∑

l /∈ĵk̃
β?lwl) ≥ θn, k̂ > k̃)

+P (|(
∑

l /∈ĵk̃
β?lwl)

T (I −HĴk̃
)ξ?| ≥ θn, k̂ > k̃)

= o(1). (4.7)

So, by (A.9), (4.5), (4.7), it follows that P (k̂ > k̃) = o(1), and the proof of

Theorem 3 is complete.

Even the true model will be included by OGA+HDIC, some redundant

variables could be contained. So, we provide a trimming method to trim out

redundant variables, Let

N̂ = {ĵl : HDIC(Ĵk̂ − {ĵl}) > HDIC(Ĵk̂), 1 ≤ l ≤ k̂} if k̂ > 1,

and N̂ = {ĵ1} if k̂ = 1. N̂ is the subset of Ĵk̂ after trimming. The following

theorem shows that OGA+HDIC+Trim will achieve the oracle property.

Theorem 4. Under the same assumption as in Theorem 3, lim
n→∞

P (N̂ =

N) = 1.

Proof. For k̂ > 1, define δl = 1 if HDIC(Ĵk̃ − {ĵl}) >HDIC(Ĵk̃) and δl = 0

otherwise. Then

14
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P (N̂ 6= N) ≤ P (N̂ 6= N, k̂ > 1, N ⊆ Ĵk̂) + P (N * Ĵk̂) + P (N̂ 6= N, k̂ = 1)

≤ P (δl = 1 and βĵl = 0 for some 1 ≤ l ≤ k̃, N ⊆ Ĵk̃, k̃ > 1)

+P (δl = 0 and βĵl 6= 0 for some 1 ≤ l ≤ k̃, N ⊆ Ĵk̃, k̃ > 1)

+P (k̂ 6= k̃) + P (N * Ĵk̂) + P (N̂ 6= N, k̂ = 1). (4.8)

Let Ĵk̃ − {ĵl} = Ql. On {k̂ = k̃}, Since by similar arguments in the proof of

Theorem 3, it can be derived that ∀θ > 0, 1 ≤ l ≤ k̂,

P ((ãn + b̃n) ≥ θn(1− exp(−n−1wn(k̂ − k̃)p
2
q1 ))) = o(1), (4.9)

in which ãn and b̃n are the same as ân and b̂n in (4.6) but with Kn replaced

by k̃, and k̃ replaced by k̃ − 1, and

P ((
∑
r/∈Ql

β?rwr)
T (HĴk̃

−HQl)(
∑
r/∈Ql

β?rwr) ≥ θn(1−exp(−n−1wn(k̂−k̃)p
2
q1 ))) = o(1),

(4.10)

P (|(
∑
r/∈Ql

β?rwr)
T (HĴk̃

−HQl)ξ
?| ≥ θn(1− exp(−n−1wn(k̂ − k̃)p

2
q1 ))) = o(1),

(4.11)

P (|n−1ξ?T (I −HQl)ξ
? − σ2

ξ?| ≥ θ) = o(1), (4.12)

P ((
∑
r/∈Ql

β?rwr)
T (I −HQl)(

∑
r/∈Ql

β?rwr) ≥ θn) = o(1), (4.13)

P (|(
∑
r/∈Ql

β?rwr)
T (I −HQl)ξ

?| ≥ θn) = o(1). (4.14)

So, by (4.9)-(4.14), it follows that

P (δl = 1 and βĵl = 0 for some 1 ≤ l ≤ k̃, N ⊆ Ĵk̃, k̃ > 1) = o(1). (4.15)

On the other hand,

P (|n−1wT
ĵl

(I −HQl)ξ
?| ≥ θLn, Dn) = o(1), (4.16)

15
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P (n−1wT
ĵl

(I −HQl)wĵl
≤ vn

2
) = o(1), (4.17)

P (|n−1(
∑
l /∈Ĵk̃

β?lwl)
T (HĴk̃

−HQl)(βĵlwĵl
+ ξ?)| ≥ θL2

n) = o(1). (4.18)

So, by (A.9), (4.16)-(4.18) and similar arguments in the proof of Theorem 3,

it follows that

P (δl = 0 and βĵl 6= 0 for some 1 ≤ l ≤ k̃, N ⊆ Ĵk̃, k̃ > 1) = o(1). (4.19)

Finally, by (4.8), (4.15), (4.19) and Theorem 2 and 3, we have the desired

conclusion.

5 Simulation Studies

In this section, we report simulation studies of the performance of OGA+

HDBIC+Trim. These simulations consider the regression model

y?t =

p′∑
j=1

β?jwtj +

p∑
j=p′+1

β?jwtj + ξ?t , t = 1, 2, ..., n, (5.1)

where βp′+1, βp′+2, ..., βp = 0, p� n, ηtj are i.i.d. N(0, σ2
η), ∀t = 1, 2, ..., n, j =

1, 2, ..., p, and are independent of xtj. ξt are i.i.d. N(0, σ2
ξ ) and are indepen-

dent of xtj, ηtj. ηyt are i.i.d. N(0, σ2
ηy) and are independent of xtj, ηtj, ξt

Examples 1 and 2 consider the case

xtj = dtj + η̃x̃t, (5.2)

in which η̃ ≥ 0 and (dt1, dt2, ..., dtj, x̃t)
T , t = 1, 2, ..., n are i.i.d. normal with

mean (1, 1, ..., 1, 0)T and covariance matrix I. We standardize the variance of

xtj by replacing xtj with
xtj√
1+η̃2

. Since for any J ⊂ {1, 2, ..., p} and 1 ≤ i ≤ p

with i /∈ J ,

λmin(R(J)) =
1

1 + η̃2
+ σ2

η > 0 and ||R−1(J)γi(J)||1 < 1,

16
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(3.1) is satisfied. Moreover, Corr(wti, wtj) = η̃2

1+η̃2
increases when η̃ grows.

Example 1. Consider (5.1) with p′ = 5, (β1, β2, ..., β5) = (3,−3.5, 4,−2.8, 3.2),

σ2
ξ = 1, σ2

ηy = 0.01 and assume that (5.2) holds. The cases η̃ = 0, which

means the regressors are uncorrelated, σ2
η = 0.01, 0.5, 0.1, and (n, p) =

(50, 1000), (100, 2000), (200, 4000) are considered here. We choose Kn =

b5(n/p
2
q1 )

1
2 c and allow q1 to vary between 4 and 15. We have also allowed D

in Kn = bD(n/p
2
q1 )

1
2 c to vary between 3 and 10, and the results are similar

to those for D = 5. We perform 1000 simulations on each case. Define the

mean squared prediction errors

MSPE =
1

1000

1000∑
l=1

(

p∑
j=1

β?jw
(l)
n+1 − ŷ

(l)
n+1)2

in which x
(l)
n+1,1, x

(l)
n+1,2, ..., x

(l)
n+1,p are the regressors associated with y

(l)
n+1, the

new outcome in the lth simulation run, and ŷ
(l)
n+1 denotes the predictor of

y
(l)
n+1. Table 1 shows that OGA+HDBIC+Trim is very sensitive to the order

of moment bounds q1, it performs well with proper q1, but performs poorly

with improper q1. If q1 is too small, the penalty for the number of predictor

variables in HDBIC is too large, so, OGA+HDBIC tends to be underfitting;

if q1 is too large, the penalty for the number of predictor variables in HD-

BIC is too small, so, OGA+HDBIC tends to be overfitting. With moderate

order of moment bounds (q1 = 8, 10), in the simulations for n ≥ 100, OGA

includes the 5 relevant regressors within Kn iterations for 99.9% or more of

the simulations, and HDBIC+Trim identify the smallest correct model for

98% or more of the simulations.

17
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Table1. Frequency, in 1000 simulations, of including all five relevant variables
(Correct), of selecting exactly the relevant variables (E), of selecting all relevant
variables and i irrelevant variables (E+i).

σ2
η q1 n p E E+1 E+2 E+3 E+4 E+5 Correct MSPE

0.01 4 50 1000 0 0 0 0 0 0 0 64.02502
100 2000 0 0 0 0 0 0 0 53.08281
200 4000 0 0 0 0 0 0 0 55.59686

6 50 1000 623 0 0 0 0 0 623 24.54740
100 2000 1000 0 0 0 0 0 1000 0.15931
200 4000 1000 0 0 0 0 0 1000 0.08096

8 50 1000 911 18 0 0 0 0 929 4.34789
100 2000 1000 0 0 0 0 0 1000 0.17550
200 4000 1000 0 0 0 0 0 1000 0.08053

10 50 1000 571 129 43 17 17 7 922 10.29011
100 2000 983 16 1 0 0 0 1000 0.17837
200 4000 999 1 0 0 0 0 1000 0.16207

15 50 1000 0 0 0 0 0 0 914 14.44628
100 2000 21 12 10 7 3 2 1000 4.70902
200 4000 677 225 75 14 5 2 1000 0.19443

0.05 5 50 1000 0 0 0 0 0 0 0 65.54043
100 2000 0 0 0 0 0 0 0 53.91476
200 4000 0 0 0 0 0 0 0 47.64495

6 50 1000 2 0 0 0 0 0 2 59.51543
100 2000 689 0 0 0 0 0 689 16.94148
200 4000 1000 0 0 0 0 0 1000 0.18862

8 50 1000 816 16 2 0 0 0 834 13.14926
100 2000 1000 0 0 0 0 0 1000 0.39365
200 4000 1000 0 0 0 0 0 1000 0.17408

10 50 1000 522 118 36 21 8 14 861 13.67555
100 2000 983 16 1 0 0 0 1000 0.44005
200 4000 998 2 0 0 0 0 1000 0.17630

15 50 1000 0 0 0 0 0 0 854 26.64408
100 2000 11 17 12 10 3 0 1000 10.66257
200 4000 683 218 75 19 1 2 1000 0.43310
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σ2
η q1 n p E E+1 E+2 E+3 E+4 E+5 Correct MSPE

0.1 5.5 50 1000 0 0 0 0 0 0 0 59.78768
100 2000 0 0 0 0 0 0 0 50.27432
200 4000 28 0 0 0 0 0 28 45.76851

6 50 1000 0 0 0 0 0 0 0 59.57889
100 2000 20 0 0 0 0 0 20 46.85445
200 4000 973 0 0 0 0 0 973 1.57907

8 50 1000 507 9 0 0 0 0 516 28.21477
100 2000 999 0 0 0 0 0 999 0.65213
200 4000 1000 0 0 0 0 0 1000 0.31026

10 50 1000 493 94 36 12 8 9 744 22.35131
100 2000 987 13 0 0 0 0 1000 0.63598
200 4000 999 1 0 0 0 0 1000 0.29356

15 50 1000 0 0 0 0 0 0 773 43.94780
100 2000 16 13 8 4 5 0 1000 16.68930
200 4000 684 222 66 20 3 2 1000 0.83435

Example 2. The settings of this example are the same with Example 1, but

we allow σ2
η to have a rate of convergence such that

||U˜ ||1 ≤ C(

√
p

2
q1

n
), (5.3)

for some C varies between 0.01 and 45. Two cases are considered here:

Case 1: Consider η̃ = 0, which means the regressors are uncorrelated, and

let σ2
η = C

√
p

2
q1

n
. In this case, the inequality in (5.3) becomes an equality.

Table 2 shows that OGA+HDBIC+Trim agrees with the asymptotic theory

of Theorem 4. In the cases of n = 50, p = 1000, OGA can include all relevant

variables at least 90% of the time if C ≤ 1 (σ2
η ≤ 0.02), furthermore, with

proper order of moment bounds (q1 = 8), OGA+HDBIC+Trim can identify

the smallest correct model over 88% of the time. In the cases of n ≥ 100,

OGA always include all relevant variables when C ≤ 5 (σ2
η ≤ 0.085), further-

more, when q1 = 8, 10, HDBIC+Trim identifies the smallest correct model

at least 98% of the time. In the case of n = 200, p = 4000, q1 = 12,

even if σ2
η = 0.625, which is 62.5% of the variance of the real input variables,
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OGA+HDBIC+Trim could still identify the smallest correct model for 91.5%

of the time. Since the penalty term of each number of predictor variables in

HDBIC is log(n)p
2
q1 , when n is small, a small q1 is appropriate to prevent

from being overfitting; When n is large, a larger q1 can be tolerated without

being seriously overfitting.

Case 2: Consider η̃ = 2, which means the regressors are highly correlated

(80%), and let σ2
η = C 1√

p

√
p

2
q1

n
, which implies (5.3). Table 3 shows that in

the cases of n = 50, p = 1000, the performance of OGA is getting worse with

the ratio of including all relevant variables decreases to about 50 ∼ 60% of

the time when C = 0.01 (σ2
η is about 0.0001) due to the highly correlatedness

of the regressors. However, when n ≥ 100, q1 = 10, 12, C ≤ 5 (σ2
η ≤ 0.024),

OGA can include all relevant variables for 98% or more of the time, and

HDBIC+Trim identifies the smallest correct model for 80% or more of the

time. In the case of n = 200, p = 4000, q1 = 10, C = 35 (σ2
η is about 0.09),

HDBIC+Trim can identify the smallest correct model for 85% of the time.
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Table2. Case 1 in Example 2, with η˜ = 0 and σ2
η = C

√
p

2
q1

n . The other notations

are the same in Table 1.

q1 C n p E E+1 E+2 E+3 E+4 E+5 Correct MSPE σ2
η

8 0.01 50 1000 913 13 0 0 0 0 926 6.28107 0.00020
100 2000 999 1 0 0 0 0 1000 0.11205 0.00016
200 4000 1000 0 0 0 0 0 1000 0.05414 0.00012

1 50 1000 887 13 0 0 0 0 900 7.44817 0.02075
100 2000 1000 0 0 0 0 0 1000 0.18092 0.01592
200 4000 1000 0 0 0 0 0 1000 0.08328 0.01223

5 50 1000 459 8 1 0 0 0 468 31.75064 0.11312
100 2000 999 1 0 0 0 0 1000 0.53822 0.08503
200 4000 1000 0 0 0 0 0 1000 0.20888 0.06431

20 50 1000 0 0 0 0 0 0 0 45.31566 0.68492
100 2000 6 0 0 0 0 0 6 34.84350 0.45657
200 4000 963 0 0 0 0 0 963 1.03303 0.31875

10 0.01 50 1000 569 125 46 24 20 16 920 9.10107 0.00017
100 2000 984 16 0 0 0 0 1000 0.10932 0.00013
200 4000 1000 0 0 0 0 0 1000 0.05647 0.00010

1 50 1000 559 130 59 26 11 9 911 8.49444 0.01740
100 2000 980 19 1 0 0 0 1000 0.19531 0.01313
200 4000 997 3 0 0 0 0 1000 0.07708 0.00992

5 50 1000 493 101 35 18 10 8 763 18.06490 0.09350
100 2000 983 16 1 0 0 0 1000 0.50227 0.06929
200 4000 999 1 0 0 0 0 1000 0.19478 0.05165

35 50 1000 0 0 0 0 0 0 0 42.26501 1.49096
100 2000 13 2 0 0 0 0 15 28.75040 0.83021
200 4000 901 0 0 0 0 0 901 1.74922 0.52387

12 0.01 50 1000 6 2 1 0 1 1 932 14.44258 0.00015
100 2000 789 151 37 16 4 1 1000 0.21749 0.00011
200 4000 970 28 2 0 0 0 1000 0.05420 0.00009

1 50 1000 0 4 1 1 0 0 908 17.25881 0.01548
100 2000 781 170 35 5 4 1 1000 0.39322 0.01155
200 4000 973 25 1 1 0 0 1000 0.08424 0.00863

5 50 1000 3 3 1 0 2 8 777 41.15342 0.08249
100 2000 798 147 39 7 3 2 1000 0.81430 0.06055
200 4000 999 1 0 0 0 0 1000 0.19478 0.05165

45 50 1000 0 0 0 0 0 0 0 119.84890 2.18342
100 2000 14 3 1 0 0 0 18 26.23490 1.05687
200 4000 915 25 2 0 0 0 942 1.53381 0.62584
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Table3. Case 2 in Example 2, with η˜ = 2 and σ2
η = C 1√

p

√
p

2
q1

n . The other

notations are the same in Table 1.

q1 C n p E E+1 E+2 E+3 E+4 E+5 Correct MSPE σ2
η

8 0.01 50 1000 507 3 3 0 0 0 513 4.75287 0.00011
100 2000 1000 0 0 0 0 0 1000 0.04985 0.00006
200 4000 1000 0 0 0 0 0 1000 0.02725 0.00003

1 50 1000 214 3 0 0 0 0 217 7.69615 0.01061
100 2000 994 0 0 0 0 0 994 0.09892 0.00578
200 4000 1000 0 0 0 0 0 1000 0.03679 0.00315

5 50 1000 2 0 0 0 0 0 2 11.83424 0.05303
100 2000 711 0 0 0 0 0 711 0.45313 0.02891
200 4000 1000 0 0 0 0 0 1000 0.08263 0.01576

15 50 1000 0 0 0 0 0 0 0 15.98425 0.15908
100 2000 2 0 0 0 0 0 2 9.95848 0.08674
200 4000 971 0 0 0 0 0 971 0.48686 0.04729

10 0.01 50 1000 466 77 21 21 3 4 610 3.65043 0.00010
100 2000 990 10 0 0 0 0 1000 0.05153 0.00005
200 4000 1000 0 0 0 0 0 1000 0.02699 0.00003

1 50 1000 343 43 19 6 2 3 429 5.37950 0.00892
100 2000 982 17 0 0 0 0 999 0.07926 0.00478
200 4000 997 3 0 0 0 0 1000 0.02730 0.00256

5 50 1000 52 8 2 1 0 0 67 9.36974 0.04462
100 2000 958 21 1 0 0 0 980 0.33916 0.02391
200 4000 1000 1 0 0 0 0 1000 0.07646 0.01281

35 50 1000 0 0 0 0 0 0 0 20.92983 0.31231
100 2000 1 0 0 0 0 0 1 13.52782 0.16736
200 4000 851 8 0 0 0 0 859 1.35893 0.08969

12 0.01 50 1000 64 20 13 7 10 14 573 5.72614 0.00008
100 2000 834 122 32 6 5 0 999 0.09410 0.00004
200 4000 980 19 1 0 0 0 1000 0.02973 0.00002

1 50 1000 59 17 14 9 8 1 466 7.44604 0.00795
100 2000 855 105 28 7 4 0 1000 0.10421 0.00421
200 4000 978 22 0 0 0 0 1000 0.03700 0.00223

5 50 1000 12 10 2 2 3 0 97 12.88040 0.03976
100 2000 803 137 35 10 4 0 993 0.31848 0.02106
200 4000 969 30 1 0 0 0 1000 0.07507 0.01116

40 50 1000 0 0 0 0 0 0 0 26.24179 0.31811
100 2000 7 7 0 0 0 0 14 11.19198 0.16851
200 4000 816 144 2 0 0 0 962 1.10595 0.08927
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Appendix

Before we prove (3.4), three lemmas are needed first:

Lemma 1. Assume (C2), max
1≤i,j≤p

1
n
|
∑n

t=1(wtiwtj − σij)| = op(

√
p

2
q1

n
) and

max
1≤i,j≤p

1
n
|
∑n

t=1(xtixtj − σxij)| = op(

√
p

2
q1

n
).

Lemma 2. Assume (C1)-(C4), max
1≤i≤p

1
n
|
∑n

t=1 ξ
?
twti| = Op(

√
p

2
q1

n
).

Lemma 3. Assume (C1)-(C4), (3.1) and Kn = O(
√

n

p
2
q1

),

max
1≤#(J)≤Kn

||R̂(J)−R(J)|| = op(1), (A.1)

max
1≤#(J)≤Kn

||R̂−1(J)−R−1(J)|| = op(1), (A.2)

max
1≤#(J)≤Kn

||R̂−1(J)|| − δ−1 = op(1). (A.3)

Proof of Lemma 1. Given M > 0,

P ( max
1≤i,j≤p

1
n
|
∑n

t=1(wtiwtj − σij)| > M

√
p

2
q2

n
)

≤M−2q2nq2p−2E( max
1≤i,j≤p

1
n
|
∑n

t=1(wtiwtj − σij)|)2q2

≤M−2q2 max
1≤i,j≤p

E( 1√
n
|
∑n

t=1(wtiwtj − σij)|)2q2 ,

it follows from (C2) that

max
1≤i,j≤p

1
n
|
∑n

t=1(wtiwtj − σij)| = Op(

√
p

2
q2

n
)

= op(

√
p

2
q1

n
).

24



doi:10.6342/NTU201700925

Similarly,

max
1≤i,j≤p

1

n
|

n∑
t=1

(xtixtj − σxij)| = op(

√
p

2
q1

n
).

Proof of Lemma 2. Note that

E(max
1≤i≤p

1
n
|
∑n

t=1 ξ
?
twti|)

= E(max
1≤i≤p

1
n
|
∑n

t=1[ξt − β˜T (η˜t − Ση(Σx + Ση)
−1(x˜t + η˜t))](xti + ηti)|)

≤ E(max
1≤i≤p

1
n
|
∑n

t=1 ξtwti|)

+ E(max
1≤i≤p

1
n
|
∑n

t=1 β˜TΣx(Σx + Ση)
−1η˜txti|)

+ E(max
1≤i≤p

1
n
|
∑n

t=1 β˜TΣη(Σx + Ση)
−1x˜tηti|)

+ E(max
1≤i≤p

1
n
|
∑n

t=1 β˜TΣη(Σx + Ση)
−1x˜txti− β˜TΣx(Σx + Ση)

−1η˜tηti|)
:= E1 + E2 + E3 + E4.

Since

E(max
1≤i≤p

1
n
|
∑n

t=1 ξtwti|)q1

≤ p max
1≤i≤p

E( 1
n
|
∑n

t=1 ξtwti|)q1

≤ p max
1≤i≤p

n−q1E( sup
1≤k≤n

|
∑k

t=1 ξtwti|)q1

≤ p max
1≤i≤p

n−q1KE(
∑n

t=1w
2
ti)

q1
2

= p max
1≤i≤p

n−
q1
2 KE( 1

n

∑n
t=1 w

2
ti)

q1
2

≤ pn−
q1
2 K max

1≤i≤p,1≤t≤n
E|wti|q1 ,

where the third inequality comes from Lemma 2 in Wei (1987), K is a positive

constant depends only on q1 and C2 in (C1); the last inequality comes from

Jensen’s inequality. From (C1), it follows that
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E1 = O(

√
p

2
q1

n
). (A.4)

Since

E2 = E(max
1≤i≤p

| 1
n

∑n
t=1 β˜T [I − Ση(Σx + Ση)

−1]η˜txti|)
≤ ||β˜?||1E( max

1≤i,j≤p
| 1
n

∑n
t=1 ηtjxti|),

by (C1) and similar arguments in the derivation of (A.4), it follows that

E( max
1≤i,j≤p

| 1
n

∑n
t=1 ηtjxti|) = O(

√
p

2
q1

n
), combined it with (C3) and (C4), it

follows that

E2 = O(

√
p

2
q1

n
). (A.5)

Similarly,

E3 = O(

√
p

2
q1

n
). (A.6)

Finally,

E4 = E

{
max
1≤i≤p

| 1
n

∑n
t=1 β˜T [η˜tηti − Ση(Σx + Ση)

−1(x˜txti + η˜tηti)]|
}

= E

{
max
1≤i≤p

| 1
n

∑n
t=1 β˜T [η˜tηti − E(η˜tηti)− Ση(Σx + Ση)

−1

×(x˜txti − E(x˜txti) + η˜tηti − E(η˜tηti))]|
}

= E

{
max
1≤i≤p

| 1
n

∑n
t=1 β˜T [w˜ twti − E(w˜ twti)− x˜txti + E(x˜txti)− x˜tηti − η˜txti

−Σx(Σ0 + Σx)
−1(w˜ twti − E(w˜ twti)− x˜tηti − η˜txti)]|

}
≤ ||β˜?||1[E( max

1≤i,j≤p
| 1
n

∑n
t=1(wtiwtj − σij)|)

+2E( max
1≤i,j≤p

| 1
n

∑n
t=1 ηtjxti|)] + ||β˜||1E( max

1≤i,j≤p
| 1
n

∑n
t=1(xtixtj − σxij)|)

= O(

√
p

2
q1

n
). (A.7)
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The last equality comes from Lemma 1, (A.5) , (C3) and (C4). By (A.4)-

(A.7) and Markov’s inequality, the proof of Lemma 2 is complete.

Proof of Lemma 3. For (A.1), note that

max
1≤#(J)≤Kn

||R̂(J)−R(J)|| ≤ Kn max
1≤i,j≤p

1
n
|
∑n

t=1(wtiwtj − σij)|.

Since Kn = O(
√

n

p
2
q1

) and max
1≤i,j≤p

1
n
|
∑n

t=1(wtiwtj − σij)| = op(

√
p

2
q1

n
) by

Lemma 1, we have the desired conclusion. By (A7) and (A8) in Ing and Lai

(2011) and (A.1), we have (A.2). Furthermore, since max
1≤#(J)≤Kn

||R−1(J)|| <

δ−1 by (3.1),

max
1≤#(J)≤Kn

||R̂−1(J)|| − δ−1 ≤ max
1≤#(J)≤Kn

||R̂−1(J)−R−1(J)||,

so, we have (A.3), and the tools for proving (3.4) are ready.

Proof of (3.4). Since by Lemma 1, n
1
2 ||wi||

p−→ σii ≥ min
1≤i≤p

|σii|, as n→∞,

∀i = 1, 2, ..., n, it suffices to prove that ∀ε > 0,∃s > 0 s.t.

P ( max
(J,i):#(J)≤m−1,i/∈J

1
n
|
∑n

t=1 ξ
?
t ŵ
⊥
ti;J | > sσ?

√
p

2
q1

n
) ≤ ε,

where σ? = min
1≤i≤p

|σii|. Notice that

max
(J,i):#(J)≤m−1,i/∈J

1
n
|
∑n

t=1 ξ
?
t ŵ
⊥
ti;J |

≤ max
1≤i≤p

1
n
|
∑n

t=1 ξ
?
twti|

+ max
(J,i):#(J)≤Kn−1,i/∈J

|( 1
n

∑n
t=1 ξ

?
twt(J))T R̂−1(J)( 1

n

∑n
t=1w

⊥
ti;Jwt(J))|

+ max
(J,i):#(J)≤Kn−1,i/∈J

|γiT (J)R−1(J) 1
n

∑n
t=1 ξ

?
twt(J))|

:= S1,n + S2,n + S3,n,
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where w⊥ti;J = wti − γTi (J)R−1(J)wt(J). Since

S3,n ≤ max
1≤i≤p

| 1
n

n∑
t=1

ξ?twti| max
1≤#(J)≤Kn,i/∈J

||R−1(J)γi(J)||1,

by Lemma 2 and (3.1), S1,n, S3,n are Op(

√
p

2
q1

n
). Notice that

S2,n ≤ ( max
1≤#(J)≤Kn

||R̂−1(J)||)Kn(1 + max
1≤#(J)≤Kn,i/∈J

||R−1(J)γi(J)||1)

×( max
1≤i,j≤p

| 1
n

∑n
t=1wtiwtj − σij|)(max

1≤i≤p
| 1
n

∑n
t=1 ξ

?
twti|),

so by Lemma 1-3, (3.1) and Kn = O(
√

n

p
2
q1

), it follows that S2,n = op(

√
p

2
q1

n
),

and the proof of (3.4) is complete.

Proof of (4.4). By the proof of (3.4), it follows that

P (|B̂n| ≥ θLn, Dn) ≤ P ( max
1≤#(J)≤m0−1,i/∈J

| 1
n

∑n
t=1 ξ

?
t ŵ
⊥
ti;J | ≥ θLn)

= o(1). (A.8)

Since

Ĉn = (n−1ξ?Tξ? − σ2
ξ?) + n−1(

∑
l /∈Ĵk̃

β?lwl)
T (I −HĴk̃

)(
∑

l /∈Ĵk̃
β?lwl)

+2n−1(
∑

l /∈Ĵk̃
β?lwl)

T (I −HĴk̃
)ξ? −n−1ξ?THĴk̃

ξ?,

it follows that

P (|Ĉn| ≥ θ,Dn) ≤ P (| 1
n
ξ?Tξ? − σ2

ξ?| ≥ θ
4
)

+P (||U˜ ||21( max
1≤i,j≤p

1
n
|
∑n

t=1wtiwtj − σij|+ max
1≤i,j≤p

|σij|) ≥ θ
4
)

+P (2||U˜ ||1 1
n

max
1≤#(J)≤m0−1,i/∈J

| 1
n

∑n
t=1 ξ

?
t ŵ
⊥
ti;J | ≥ θ

4
)

+P ( max
1≤#(J)≤m0

||R̂−1(J)||m0 max
1≤i≤p

( 1
n

∑n
t=1 ξ

?
twti)

2 ≥ θ
4
)

= o(1), (A.9)
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the equality comes from (C1), (C7), (C8), (A.8), Lemma 1-3. Note that

P (Ân <
vn
2
, Dn) ≤ P (λmin(R̂(Ĵk̃)) <

vn
2
, Dn)

≤ P (λmin(R̂(Ĵm0)) <
vn
2

)

≤ P ( max
1≤#(J)≤m0

||R̂(J)−R(J)|| > δ
2
)

= o(1), (A.10)

the equality comes from Lemma 3, and

P (|Ên| ≥ θL2
n, Dn)

≤ P (||U˜ ||1 max
1≤j≤p

|β?j |( max
1≤i,j≤p

1
n
|
∑n

t=1 wtiwtj − σij|+ max
1≤i,j≤p

|σij|) ≥ θ
2
L2
n)

+P (||U˜ ||12(S2,n + S3,n) ≥ θ
2
L2
n)

= o(1). (A.11)

where S2,n, S3,n are the same as those in the proof of (3.4), the equality

comes from (C1), (C3), (C7), Lemma 1 and the proof of (3.4). By

(A.8)-(A.11), the proof of (4.4) is complete.

Proof of (4.7). Since ∃ a constant λ̃ > 0 and ζn →∞ s.t.

n(1− exp(−n−1wn(k̂ − k̃)p
2
q1 ))

k̂ − k̃
≥ λ̃min{(np

2
q1 )

1
2 , wnp

2
q1 }

= ζnp
2
q1 , (A.12)

it follows from (A.12) that

P ((k̂ − k̃)(ân + b̂n) ≥ θn(1− exp(−n−1wn(k̂ − k̃)p
2
q1 )), k̂ > k̃)

≤ P (||R̂−1(ĴKn)|| max
1≤i≤p

(n−
1
2

∑n
t=1wtiξ

?
t )

2 ≥ θ
2
ζnp

2
q1 )

+P (||R̂−1(ĴKn)||||n(S2,n + S3,n)|| ≥ θ
2
ζnp

2
q1 )

= o(1), (A.13)

the equality comes from Lemma 2, 3 and proof of (3.4). Note that

P ((
∑

l /∈Ĵk̃
β?lwl)

T (HĴk̂
−HĴk̃

)(
∑

l /∈Ĵk̃
β?lwl)

29



doi:10.6342/NTU201700925

≥ θn(1− exp(−n−1wn(k̂ − k̃)p
2
q1 )), k̂ > k̃)

≤ P (||U˜ ||21( max
1≤i,j≤p

1
n
|
∑n

t=1wtiwtj − σij|+ max
1≤i,j≤p

|σij|)

≥ θmin{

√
p

2
q1

n
, n−1wnp

2
q1 }(k̂ − k̃), k̂ > k̃)

≤ P (||U˜ ||21( max
1≤i,j≤p

1
n
|
∑n

t=1wtiwtj − σij|+ max
1≤i,j≤p

|σij|) ≥ θmin{

√
p

2
q1

n
, L4

n})

= o(1), (A.14)

and

P (|(
∑

l /∈Ĵk̃
β?lwl)

T (HĴk̂
−HĴk̃

)ξ˜?| ≥ θn(1−exp(−n−1wn(k̂− k̃)p
2
q1 )), k̂ > k̃)

≤ P (||U˜ ||12(S2,n + S3,n) ≥ θmin{

√
p

2
q1

n
, L4

n})
= o(1). (A.15)

and similar to (A.14),(A.15), it follows that

P ((
∑
l /∈Ĵk̃

β?lwl)
T (I −HĴk̃

)(
∑
l /∈Ĵk̃

β?lwl) ≥ θn, k̂ > k̃) = o(1), (A.16)

P (|(
∑
l /∈Ĵk̃

β?lwl)
T (I −HĴk̃

)ξ˜?| ≥ θn, k̂ > k̃) = o(1). (A.17)

So, by (A.13)-(A.17), the proof of (4.7) is complete.
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