請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2529完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳和麟 | |
| dc.contributor.author | Shao-Heng Ko | en |
| dc.contributor.author | 柯劭珩 | zh_TW |
| dc.date.accessioned | 2021-05-13T06:41:32Z | - |
| dc.date.available | 2017-07-12 | |
| dc.date.available | 2021-05-13T06:41:32Z | - |
| dc.date.copyright | 2017-07-12 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-06-23 | |
| dc.identifier.citation | [1] D. Boud, R. Cohen, and J. Sampson, editors. Peer learning in higher education. 2001.
[2] S. Boyd and L. Vandenberghe. Convex optimization, section 3.2, page 79. Seventh edition, 2004. [3] A. U. Carbonara, A. Datta, A. Sinha, and Y. Zick. Incentivizing peer grading in moocs: An audit game approach. In International Joint Conference on Artificial Intelligence, ICJAI ’15, pages 497–503, 2015. [4] K. Cho, C. D. Schunn, and R. W. Wilson. Validity and reliability of scaffolded peer assessment of writing from instructor and student perspectives. Educational Psychology, 98(4):891–901, 2006. [5] Coursera. See feedback and grades for peer reviewed assignments, 2017. [6] L. de Alfaro and M. Shavlovsky. Crowdgrader: a tool for crowdsourcing the evaluation of homework assignments. In Proceedings of the 45th ACM technical symposium on Computer science education, SIGCSE ’14, pages 415–420, 2014. [7] L. de Alfaro and M. Shavlovsky. Dynamics of peer grading: An empirical study. In Proceedings of the 9th International Conference on Educational Data Mining, EDM ’16, pages 62–69, 2016. [8] F. Dochy, M. Segers, and D. Sluijsmans. The use of self-, peer and co-assessment in higher education: A review. Studies in Higher Education, 24(3):331–350, 1999. [9] N. Falchikov and J. Goldfinch. Student peer assessment in higher education: A meta-analysis comparing peer and teacher marks. Review of Educational Research, 70(3):287–322, 2000. [10] A. Fox. From moocs to spocs. Communications of the ACM, 56(12):38–40, 2013. [11] S. Freeman and J. W. Parks. How accurate is peer grading? CBE-Life Sciences Education, 9(4):482–488, 2010. [12] S. Halawa, D. Greene, and J. Mitchell. Dropout prediction in moocs using learner activity features. Experiences and best practices in and around MOOCs, (37):7–16, 2014. [13] M. B. Hoy. Moocs 101: an introduction to massive open online courses. Medical reference services quarterly, 33(1):85–91, 2014. [14] M. Kloft, F. Stiehler, Z. Zheng, and N. Pinkwart. Predicting mooc dropout over weeks using machine learning methods. In Proceedings of the EMNLP 2014 Workshop on Analysis of Large Scale Social Interaction in MOOCs, pages 60–65, 2014. [15] N.-F. Liu and D. Carless. Peer feedback: the learning element of peer assessment. Teaching in Higher Education, 11(3):279–290, 2006. [16] Y. Lu, J. Warren, C. Jermaine, S. Chaudhuri, and S. Rixner. Grading the graders: Motivating peer graders in a mooc. In Proceedings of the 24th International Conference on World Wide Web, WWW ’15, pages 680–690, 2015. [17] H. Luo, A. C. Robinson, and J.-Y. Park. Peer grading in a mooc: Reliability, validity, and perceived effects. Journal of Asynchronous Learning Networks, 18(2):n2, 2014. [18] C. Piech, J. Huang, Z. Chen, C. B. Do, A. Y. Ng, and D. Koller. Tuned models of peer assessment in moocs. In Proceedings of the 6th International Conference on Educational Data Mining (EDM 2013), EDM ’13, pages 153–160, 2013. [19] P. M. Sadler and E. Good. The impact of self- and peer-grading on student learning. Educational Assessment, 11(1):1–31, 2006. [20] L. A. Stefani. Peer, self and tutor assessment: Relative reliabilities. Studies in Higher Education, 19(1):69–75, 1994. [21] K. Topping. Peer assessment between students in colleges and universities. Review of Educational Research, 68(3):249–276, 1998. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2529 | - |
| dc.description.abstract | 在大型開放式線上課程 (MOOCs) 當中,
由於學習者數量極為龐大,高階學習表現通常只能透過同儕互評 (Peer Grading) 的方式來評量。 在MOOCs中實施同儕互評時,學習者通常缺乏為其他人評分的動機,因而沒有付出足夠的心力。 為改善此現象,我們考慮讓學習者的成績與其評量他人的準確度相關的機制,並建立相關的賽局理論模型,以分析學習者在此機制下的理性行為。 我們發現一組能保證純粹均衡存在的條件,在此條件下,課程設計者將可透過調整機制參數的方式,促進學習者投資更多的心力在評分之上。 更進一步,若學習者之間具有同質性時,我們證明在所有純粹均衡當中,所有為同一份作業評分的學習者都會付出恰相等的時間。 藉由這個性質,我們能夠計算所有可能的純粹均衡點。 我們將上述結果推廣到某些學習者並非採取理性策略的狀況,並討論如何在實際情況中應用本研究的結果。 | zh_TW |
| dc.description.abstract | Due to huge participant sizes in Massive Open Online Courses (MOOCs), peer grading is practically the only existing solution to grading high-level assignments. One of the main issues of utilizing peer grading in MOOCs is that learners are not motivated and do not spend enough effort in grading. To modify current peer grading mechanism to induce better grading, we focus on the idea of making the learners' grade depend on the accuracy of their grading of others' work. We built a game theoretical model to characterize the rational behavior of learners in such a mechanism. We found a set of conditions which guarantees existence of pure-strategy equilibria. When the conditions are satisfied, the course designer can encourage the learners to spend more time on grading through tuning the mechanism parameters. Furthermore, when the learners are assumed to be homogeneous, we proved that in any pure equilibrium, any submitted work will be graded with identical effort by the relevant graders. With this property all the possible pure equilibria are theoretically calculable. We also extended our result to the case where some of the learners are not strategic or rational. We discussed applications of our results in practical situations. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-13T06:41:32Z (GMT). No. of bitstreams: 1 ntu-106-R04921049-1.pdf: 680843 bytes, checksum: 238c584219086e61bd99724e9d135ffd (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 誌謝v
摘要vii Abstract ix 1 Introduction 1 2 Model 7 2.1 Players and Actions 7 2.2 Grading Mechanism 8 2.3 Utility 9 2.4 Decomposition of Model 10 3 Analysis 13 3.1 Encouraging Conditions and Existence of Equilibria 13 3.2 Encouraging Peer Grading 16 3.3 Settings That Meet the Encouraging Conditions 18 4 Homogeneous Grading 23 5 Peer Grading with Irrational Players 27 6 Discussion and Future Work 31 6.1 Other Game Settings 31 6.2 Setting Up the Parameters in Practice 31 6.3 Average Amount of Graders 32 6.4 Unbalanced Peer Grading Tasks 33 6.5 Towards Biased Grading 34 6.6 Concensus Grading 34 Bibliography 37 | |
| dc.language.iso | en | |
| dc.subject | 納許均衡 | zh_TW |
| dc.subject | 同儕互評 | zh_TW |
| dc.subject | 大型開放式線上課程 | zh_TW |
| dc.subject | 賽局理論 | zh_TW |
| dc.subject | 機制設計 | zh_TW |
| dc.subject | Mechanism Design | en |
| dc.subject | Nash Equilibrium | en |
| dc.subject | Peer Grading | en |
| dc.subject | Massive Open Online Courses | en |
| dc.subject | Game Theory | en |
| dc.title | 促進大型開放式線上課程中的同儕互評 | zh_TW |
| dc.title | Encouraging Peer Grading in MOOCs | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 葉丙成,于天立,孔令傑 | |
| dc.subject.keyword | 賽局理論,大型開放式線上課程,同儕互評,納許均衡,機制設計, | zh_TW |
| dc.subject.keyword | Game Theory,Massive Open Online Courses,Peer Grading,Nash Equilibrium,Mechanism Design, | en |
| dc.relation.page | 39 | |
| dc.identifier.doi | 10.6342/NTU201701049 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2017-06-23 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf | 664.89 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
