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摘要

在⼤型開放式線上課程 (MOOCs)當中，由於學習者數量極為龐⼤，
⾼階學習表現通常只能透過同儕互評 (Peer Grading)的⽅式來評量。在
MOOCs中實施同儕互評時，學習者通常缺乏為其他⼈評分的動機，
因⽽沒有付出⾜夠的⼼⼒。為改善此現象，我們考慮讓學習者的成績
與其評量他⼈的準確度相關的機制，並建⽴相關的賽局理論模型，以
分析學習者在此機制下的理性⾏為。我們發現⼀組能保證純粹均衡存
在的條件，在此條件下，課程設計者將可透過調整機制參數的⽅式，
促進學習者投資更多的⼼⼒在評分之上。更進⼀步，若學習者之間具
有同質性時，我們證明在所有純粹均衡當中，所有為同⼀份作業評分
的學習者都會付出恰相等的時間。藉由這個性質，我們能夠計算所有
可能的純粹均衡點。我們將上述結果推廣到某些學習者並⾮採取理性
策略的狀況，並討論如何在實際情況中應⽤本研究的結果。

關鍵字：賽局理論，⼤型開放式線上課程，同儕互評，納許均衡，機
制設計
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Abstract

Due to huge participant sizes inMassive Open Online Courses (MOOCs),

peer grading is practically the only existing solution to grading high-level as-

signments. One of the main issues of utilizing peer grading in MOOCs is that

learners are not motivated and do not spend enough effort in grading. Tomod-

ify current peer grading mechanism to induce better grading, we focus on the

idea of making the learners’ grade depend on the accuracy of their grading of

others’ work. We built a game theoretical model to characterize the rational

behavior of learners in such a mechanism. We found a set of conditions which

guarantees existence of pure-strategy equilibria. When the conditions are sat-

isfied, the course designer can encourage the learners to spend more time on

grading through tuning the mechanism parameters. Furthermore, when the

learners are assumed to be homogeneous, we proved that in any pure equilib-

rium, any submitted work will be graded with identical effort by the relevant

graders. With this property all the possible pure equilibria are theoretically

calculable. We also extended our result to the case where some of the learn-

ers are not strategic or rational. We discussed applications of our results in

practical situations.

Keywords. Game Theory, Massive Open Online Courses, Peer Grading,

Nash Equilibrium, Mechanism Design
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Chapter 1

Introduction

Online learning is becoming a flourishing industry. In addition to the long-standing Open-

CourseWares, learners today have MOOCs, or Massive Open Online Courses, to gain

knowledge from. Unlike OpenCourseWares, which simply releases the course material,

MOOCs are “online classes that anyone, anywhere can participate in” [13]. Furthermore,

current MOOCs are trending toward formality; they are charging certification fees, offer-

ing institutional credits and even online programs. Consequently, the task of performance

assessment is becoming more and more important.

It is common for aMOOC to have thousands of participants, in which the load of evalu-

ating the grades is well beyond any course staff can afford. While automated grading tech-

niques can easily handle multiple choices and programming tasks, they are nearly useless

when it comes to grading more sophisticated assignments, like mathematical proofs, art

work, written pieces and speeches. Peer grading is practically the only existing solution

to grading high-level assignments.

The concept of peer grading comes from traditional pedagogy, where its effects were

well-studied [1, 8, 9, 20, 21]. In the context of MOOCs, after any learner submits an as-

signment, it will be graded by several peers, and the learner himself is required to grade

the others’ assignments as well. The final score of an assignment is determined by some

aggregation of all the scores given to it. Past work [4, 9, 15] has shown that such aggre-

gation is decently close to the evaluation from the instructor even with a small number of

graders grading each assignment. Peer grading also has the effect of deepening learner’s
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comprehension [19], building positive learning environment [21], and even metacognitive

benefits [8].

However, there are problems to be addressed when peer grading is applied in MOOCs.

Learners in MOOCs, who come from all around the world and all backgrounds, feature

great diversity. Empirical study shows that peer grading has weaker reliability in MOOCs

than in real classes [17], and not all learners are satisfied with the mechanism [4,17]. This

leads to a main question:

How can we modify the peer grading mechanism to induce better grading precision?

The work of Piech et al. [18], with an eye on tuning the mechanism used by Coursera,

investigated various probabilistic models of peer grading. A part of their work assigns

weights to graders by past performance, exploiting the assumption that more adequate

grading is correlated with higher grades. While the assumption is still up for debate [7],

Piech et al. claim that peer grading accuracy can be improved simply by measuring the

bias and reliability of graders. However, there remains an unaddressed issue: graders in

practice are not spending enough time on peer grading, possibly due to lacking motiva-

tion. Thus, Piech et al. called for game theoretical research on mechanisms to incentivize

learners to put more effort into grading.

Following the abovework, there have beenmultiplework on incentivizing the learners,

by both rewards and punishments. On the rewards side, de Alfaro and Shavlovsky [6]

implemented a system named Crowdgrader that lets learners collaboratively review and

grade assignments. In this system, the overall grade of a learner depends both on the

aggregate grade received, and their “precision” in reviewing their peer’s work, which is

determined by the average error with respect to the consensus grade. While this ever-

evolving platform is primarily used in college classes, the designers reported that “the

number of students who complained about mis-gradings was about the same as the one

we typically experience using TAs” [6].

On the punishments side, Carbonara et al. [3] tackled the problem using an audit game

2
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approach, in which learners are penalized if they are caught misgrading the others’ work.

They studied the problem of allocating limited auditing resources, like TA hours, to het-

erogeneous learners. Under the assumption that all learners spend a fixed amount of total

time in doing the assignment and peer grading, they showed an algorithm to obtain an

approximately optimal allocation. However, this assumption is also the biggest caveat of

their model, as it is better to motivate learners to spend more time on learning.

Finally, Lu et al. [16] designed a large experiment to motivate peer graders by letting

their grading performance to be examined as well, but without any rewards or punishments

as consequence. While this alone seemed not to do the trick, they found that learners

improved their grading accuracy by only evaluating the others’ grading performances.

They proposed the possibility of motivating the graders by other incentives instead of

grades.

Motivated by all the above work, and the fact that most of the work about peer grading

are empirical studies, we aim to investigate the behavior of peer graders under the rewards

approach from a game theoretical perspective. By building a model of the peer grading

mechanism, we ask the following main questions:

• What will be the rational behaviors of graders?

• Under what conditions will such mechanisms work in line with our expectations?

• What can the course provider do to affect the graders’ behaviors?

The overall structure of our model is similar to the design in [6], in which a consensus

grade of an assignment directly comes from aggregation of the graders’ opinions. An

evaluation of one grader’s accuracy is then measured by how far away his opinions are

from the related consensus grades. The final utility of a learner is realized as a linear

combination of his assignment score and his grading accuracy. Instead of strategically

deciding howmuch points they give to a particular assignment, we assume that each grader

only decides the amount of time he puts into every grading task, whichwill not be observed

3



doi:10.6342/NTU201701049

by the course provider. Unlike that in [3], we do not assume a tradeoff between time put

in doing assignment and in peer grading, as these two phases often have different time

periods in common MOOCs settings.

Though we mainly think of the utility from precise grading as given grades, our model

can capture other types of rewards like fame, self-fulfillment, or even monetary rewards

and career opportunities. While [6] measures the grader’s overall accuracy, we take into

account every grading attempt rather separately, broadening the possible strategies for

each grader. Generally, we assume the peer graders are heterogeneous, both in their

grading ability and their evaluation of time, which captures the feature of a MOOCs en-

vironment.

Similar to that in [18], we assume that the grade given by a peer grader to each as-

signment is distributed around the true value of the assignment. Naturally, the degree of

dispersion depends on the effort in grading. We do not assume a peer grader is capable of

doing precise grading even with unlimited effort. We further assume that the graders do

unbiased grading, which means they overgrade and undergrade equally often. While peer

graders tend to bias toward high grades in reality [11,15], this effect can be neutralized by

pretreatments after measuring the bias.

The main result of this paper is a set of sufficient conditions, called the encouraging

conditions, which guarantees the existence of pure Nash equilibria. Once the condition is

met, the course designer can encourage or discourage the graders to spend more time on

grading by tuning the mechanism parameters. We also proved that the encouraging con-

ditions are satisfied in a series of exact situations, where the grade given by a peer grader

to an assignment follows a normal distribution with the intrinsic value of the assignment

being the mean and the variance being a non-increasing and convex function of the time

spent.

Later, we focus on a special environment where all learners are homogeneous. This

setting can be related to SPOCs, or Small Private Online Courses, where “MOOCs are

used as a supplement to classroom teaching” [10]. We found that under this assumption,

every pure Nash equilibrium has the property that each assignment is graded by the same

4
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level of effort by all the relevant graders. On the other hand, we pointed out that the

pattern of equilibrium behaviors is still valid in the situation when some of the graders are

assumed to be irrational players with perdetermined strategies.

The general model we use is introduced in Section 2, where we promptly simplify it

into more compact models. Our main result lies in Section 3, including the encouraging

conditions, the consequent existence of pure equilibria, and how the mechanism designer

encourages peer grading by tuning the parameters. We also propose a series of practi-

cal settings that satisfy the encouraging conditions. In Section 4, we present the further

limited homogeneous model and obtain stronger results. In Section 5 we extend our anal-

ysis to include irrational graders. Finally, discussions toward biased grading and practical

implications are in Section 6.

5
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Chapter 2

Model

In this chapter, we propose a model which will be used throughout the paper. We charac-

terize those assignments that can be graded without subjectivity by assuming an intrinsic

value for each submitted work. Intuitively, the more time a learner spent on grading a

submission, the closer his grading will be to its intrinsic value. Our model is mainly built

on such assumption, while the overall structure is similar to the common mechanism used

in MOOC platforms.

2.1 Players and Actions

We assume N learners, {a1, a2, ...aN}, working on some assignment in a MOOC, have

already finished their submissions and are entering the peer-grading phase. The submitted

work of ai has intrinsic value vi ∈ [0,M ], whereM is the maximum score of this assign-

ment. The grading task is fully described byG, anN byN matrix with boolean elements.

G(i,j) equals to 1 if aj is asked to peer grade the submitted work of ai, and 0 otherwise.

Each learner is asked to grade exactly k submissions, and each submission is graded by

exactly k learners; hence,
∑

i G(i,j) =
∑

i G(j,i) = k. Furthermore, no learner self-grades

his submitted work; hence G(i,i) = 0. We assume that all possible grading relations are

chosen equally likely beyond the learners’ knowledge. Thus the learners cannot inference

any information about who is grading their submissions or vice versa.

7
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The vector Tj = [t1j , t
2
j , ...t

N
j ] is the strategy of learner aj . tij ∈ [0, U ] is the amount of

time he puts on grading the submission of ai, where U is assumed to be the upper bound

limit. This upper bound is natural most of the time; no player will spend longer time if the

corresponding cost is larger than the maximum reward possible. While such limit does

not exist in practice, peer grading cannot take forever long, and there will be a stop-loss

point such that keep increasing the time will not do any good. In reality, a grader only

determines how much of time he puts on each submission he receives. Therefore, tij = 0

if G(i,j) = 0. The course provider cannot observe any learner’s strategies.

2.2 Grading Mechanism

In this model, we assume that a peer grader does not strategically give grades. Instead,

the grades he gives are random variables, following distributions decided by the amount of

time (effort) he puts on each submitted work, and its intrinsic value. To characterize this,

we denote fj(·) to be the grading possibility function of grader j, where fj(x, v, t) refers

to the probability that grader j gives x points to an assignment with intrinsic value v, after

spending t units of time on grading it. Thus, given fixed v, t, fj(x, v, t) is a probability

density function, and corresponds to a cumulative density function Fj(x, v, t). Clearly,

fj(x, v, t) = 0 ∀j, ∀x /∈ [0,M ]. Let Si
j be the score aj gives to the submitted work of ai.

If G(i,j) = 1, then Si
j ∼ Fj(·, vi, tj). Furthermore, we assume unbiased grading: given

v, t, fj(v−x, v, t) = fj(v+x, v, t), ∀x ∈ R. To simplify notations, we use fg to represent

the functions f1(·, ·, ·), f2(·, ·, ·), ...fN(·, ·, ·).

Denote Si = [Si
j|G(i,j) = 1] to be the vector of grades given to the submission of

ai. The aggregate score, or consensus grade, of ai’s submission, is then determined by

Ŝi = fagg(Si). Naturally, fagg(Si) = fagg(S′i) if S′i is a permutation of Si; that is, the

consensus grade should not depend on the order of the peer grades given. Furthermore,

fagg(·) should be non-decreasing in every element in Si. There exist various methods in

aggregating peer grades; for example, the Crowdgrader platform in [6] uses an Olympian

average function, where the highest and the lowest grades are dropped before taking

8
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average. Coursera chooses a median function instead [5]. Thus we do not specify an

exact method here. Since we require fj(·, vi, t) to be symmetric with respect to vi for

any t, given any strategy profile, the derived probability distribution of Ŝi will also be

symmetric with respect to vi.

Next, the accuracy level of aj grading the submission of ai is determined by αi
j =

faccu(|Si
j − Ŝi|) ∈ [0, 1], while faccu(·) must be non-increasing. Similarly to above, we

only require that the function solely depends on the difference between the single grade

and the aggregated grade. Finally, the average peer grading accuracy of aj is determined

by α̂j =
1
k

∑
i(α

i
j). Clearly, since αi

j ∈ [0, 1], α̂j ∈ [0, 1].

2.3 Utility

We assume that grader ai has time-to-grade ratio ri ≥ 0, which means he is willing to give

up ri units of time to earn one point in his grade. All values of ri are public information.

We then define the time-to-grade ratio vector r = [ri]. Also, we define λ to be the portion

grading performance accounts for in one’s final utility. This means a learner can earn up

to λM points by peer grading, if we take into account only rewards in grades. The final

utility of learner ai is defined to be πi = λMα̂i − ri
∑

j t
j
i . All learners are risk-neutral.

Note that ai should get (1 − λ)Ŝi points from his own work as well. However, this part

is independent to any of his strategic decision. Hence we can remove this term from the

utility in our model. We can define one specific game model by defining all the above

parameters, functions and probablistic distributions.

Definition 2.1. An unbiased peer grading game, or UPG game, is a tuple

G =
(
N, k,M, r, U, λ, fg, fagg(·), faccu(·)

)
.

Note that all fj’s need not to be the same. Hence, the graders’ actions, and conse-

quently the perceived score distributions are generally heterogeneous. Nowadays, it is

common for MOOCs to utilize analytic rubrics in peer grading assignments, leading to

more objective and systematic grading results; however, complete objectivity is impossi-

9
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ble to be achieved. Also, how learners value their time is generally out of the instructor’s

control.

Parameters and functions M,k, λ, fagg(·), faccu(·) are chosen by the mechanism de-

signer. These information, N, r and fg and the whole structure of the mechanism are

public information to all learners, while the intrinsic value vector V = {vi} and the re-

lation matrix G are unobserved. Since the learners are risk-neutral, learner ai rationally

determines Ti in order to maximize E[πi]. Note that Ti will not be observed by the de-

signer and will not be directed used to determine the reward; the designer can only decide

the parameters and functions above, seeking to induce better overall effort and/or grading

accuracy.

2.4 Decomposition of Model

First and foremost, a simplification can be directly made from our model. We can observe

that an UPG game is indeed a series of independent smaller subgames, each containing

only one submitted work of assignment. This is described in the theorem below.

Definition 2.2. Given the other players’ strategy profile, T−j = {T1, ...Tj−1, Tj+1, ..., TN},

we define learner aj’s best responseT ∗
j to be the optimal choice ofTj that maximizesE[πj],

conditioned on T−j .

Theorem 2.1. Given the other players’ two strategy profiles, T−j, T
′
−j , the corresponding

best responses t∗j and t′∗j satisfies the following: t∗ij = t′∗ij , if tij′ = t′ij′ ,∀j′ ̸= j.

Proof. Consider player j. We first observe that his total expected utility can be decom-

posed into

E[πj] =
∑
i

(
λM

k
E[αi

j]− rjt
i
j).

Therefore, maximizing the expected utility is equivalent to maximizing the total of the

k nonzero terms, each corresponding to the expected utility from grading one specific

submitted work. Given the other players’ strategies, fixing i, the term λM
k
E[αi

j] − rjt
i
j

10
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only depends on Ti = [tij|G(i, j) = 1]. Thus, maximizing the total of all k terms is

equivalent to simultaneously maximizing k terms independently.

If tij′ = t′ij′ ,∀j′ ̸= j holds, then the optimal choice of tij , which maximizes λM
k
E[αi

j]−

rjt
i
j , should also maximize λM

k
E[α′i

j]− rjt
′i
j .

Equivalently, the general UPG game can be decomposed into N subgames, each con-

taining one submitted work of assignment and k relevant peer graders. The equilibrium of

a general UPG game, described by all learner’s effort on all submitted works they grade,

is then composed of their respective effort in all subgames. Here we emphasize that there

exists no total time limit for a learner, or equivalently, the maximum time possible to put

in, which corresponds to the length of the peer grading phase, is much longer than kU ,

which is the maximum total time spent on grading. Thus, putting in more time grading

one submission does not affect the grading of other submissions. With the help of this

property, we can separate them and analyze one subgame at a time. For the rest of the

paper, we define such subgame as follows to simplify the notations.

Definition 2.3. In a UPG subgame, only k learners are considered; each of them grades the

same submission with value v. tj represents the amount of effort learner j puts in grading

the submitted work, dropping the superscript from tij in the general game. Sj, Ŝ and αj

are defined analogously, inheriting the meaning of the counterparts with superscript. πj =

E[λM
k
αj − rjtj] is now the utility learner aj gets directly from his peer grading effort in

this subgame.

Note thatN becomes irrelevant once we separate a UPG game into subgames, and we

can fully describe such a subgame by specifying (M,k, r, U, λ, fg, fagg(·), faccu(·)). We

call this tuple a setting of a UPG subgame. Note that here fg represents only k functions.

11
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Chapter 3

Analysis

3.1 Encouraging Conditions and Existence of Equilibria

In this section, we define the following encouraging conditions and prove that these con-

ditions lead to the existence of pure Nash equilibria in a UPG subgame.

Definition 3.1. A setting of a UPG subgame (M,k, r, U, λ, fg, fagg(·), faccu(·)) satisfies

the Encouraging Conditions if:

• (EC-1)

Given the other players’ strategies T−j = [t1, t2, ..., tj−1, tj+1, ..., tk],

E[αj](T−j, tj) is non-decreasing and strictly concave on tj ∈ [0, U ].

• (EC-2)

Let T−j and T ′
−j be two strategy profiles satisfying the following properties:

– tp < t′p for some p,

– tq = t′q ∀ q ̸= p,

Then ∂
∂tj
E[αj](T−j, tj) <

∂
∂tj
E[αj](T

′
−j, tj), ∀tj.

Intuitively, EC-1 says that if a grader puts more effort in grading, his accuracy im-

proves, with a diminishing marginal effect. The following lemma says that, combining

with a linear cost on time, EC-1makes the decision problem for the grader straightforward.

13
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Lemma 3.1. If a setting of a UPG subgame satisfies EC-1, then given any T−j , πj(T−j, tj)

is strictly concave on tj ∈ [0, U ], and the best response t∗j is unique.

Also, either ∂
∂tj
E[αj](T−j, tj)

∣∣∣
t∗j

=
krj
λM

, or t∗j ∈ {0, U}.

Proof.

∂2(πj)

∂(tj)2
=

∂2

∂(tj)2
λM

k
E[αj](T−j, tj)−

∂2(rtj)

∂(tj)2

=
λM

k

∂2

∂(tj)2
E[αj](T−j, tj)

< 0,

which gives the first statement.

The last inequality is from the concavity of E[αj], required in EC-1. Since the partial

utility function is concave, its global maximum either lies on the boundary or satisfies the

first-order condition

∂(πj)

∂(tj)

∣∣∣∣
t∗j

=
∂

∂(tj)

λM

k
E[αj](T−j, tj)− rjtj

∣∣∣∣
t∗j

=
λM

k

∂

∂(tj)
E[αj](T−j, tj)

∣∣∣∣
t∗j

− rj

= 0,

which gives the second statement.

Note that in the boundary cases,

• ∂
∂tj
E[αj](T−j, tj) >

krj
λM

, ∀tj ∈ [0, U ], if t∗j = U .

• ∂
∂tj
E[αj](T−j, tj) <

krj
λM

, ∀tj ∈ [0, U ], if t∗j = 0.

On the other hand, EC-2 states that, an arbitrary grader unilaterally increasing his

own grading effort will increase the marginal utilities for all other graders. Intuitively,

although without specifications, we generally think of the grading possibility functions to

be distributed closer to the intrinsic value if the effort is increased. Therefore, unilaterally

increasing effort will make the concensus grade also distributed closer to the intrinsic

14
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value. This effect is generally good for graders since they can only invest effort to stand

closer to the intrinsic value, instead of the concensus. If this effect can encourage graders

to invest more effort, then we can expect a positive reinforcement process. The following

theorem shows that pure Nash equilibria always exist if both conditions are satisfied. The

positive reinforcement process can be seen in the proof.

Theorem 3.2. In any UPG subgame that satisfies both encouraging conditions, there

exists at least one pure Nash equilibrium.

Proof. We prove the existence of pure Nash equilibria by describing a virtual algorithm

that “calculates” one.

Given the setting of the UPG subgame, initially we let Ti = 0 ∀i, or equivalently no grader

puts in any kind of effort. We then modify the effort levels one by one in the order of i if

an equilibrium is not reached yet. When modifying Ti, we fix all other effort levels T−i,

and move Ti to the best response of grader i, with respect to T−i.

Trivially, since all effort levels are initialized to be zero, Ti either stays at zero or is raised

upwards when it is modified for the first time. Also by EC-2, whenever one of the effort

levels is raised upwards, all marginal utilities for all other graders will be increased.

Suppose the effort level of grader j, now temporarily set to Tj , is being modified for the

second or more time, and no effort levels were decreased in the previous k − 1 modifica-

tions.

By the previous lemma, if the marginal utility, ∂
∂(tj)

E[αj](T−j, tj) − krj
λM

, is negative in

the whole interval [0, U ], then the best response for grader j will remain at zero regard-

less of all others’ strategies. Suppose not, then in the previous round, Tj is set to make

the marginal utility at zero. By the effects of EC-2, the marginal utility is now non-

negative after a whole round of modifications. Suppose in the current round the other

graders’ strategies are T−j , and Tj is about to be modified to T ′
j . From EC-1, since

∂
∂(tj)

E[αj](T
′
−j, tj) =

krj
λM

≤ ∂
∂(tj)

E[αj](T−j, tj), we have T ′
j ≥ Tj . Combined with the

fact that all effort levels can only increase in the first round, by induction we can prove

that all effort levels are never decreased.

Since the effort levels cannot exceed U , our algorithm will eventually converge to a stable
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state when k consecutive effort levels are not modified in their turns, which gives a pure

Nash equilibria. However, this algorithm does not converge in any guaranteed time limit,

so it has little use of calculating the equilibria in practice.

3.2 Encouraging Peer Grading

In the previous section we have already seen the ratio kri
λM

, a grader’s marginal accuracy

reward in equilibrium. Anymarginal accuracy reward at least this large will justify putting

in more time, hence it is the effective time-to-grade ratio. While ri is an exogenous param-

eter, k,M and λ is specified by the mechanism designer. Thus, the designer can increase

or decrease this ratio to any arbitrary extent. Below we describe its effect on the possible

equilibria.

Definition 3.2. The effective time-to-grade ratio for grader i in a UPG subgame is

r̄i =
kri
λM

= r̄ri, where r̄ = k
λM

.

Theorem 3.3. Assume k is fixed. Suppose both EC-1 and EC-2 are satisfied in a UPG

subgame G1 with r̄ = r̄1, and G2, G3 are UPG subgames that differs with G1 only in

r̄2 > r̄1 > r̄3. If T1 = [t1i] is an equilibrium in G1, then

• There exists an equilibrium T2 in G2 where t2i ≤ t1i ∀i.

If the i-th equality holds, then t1i = 0.

• There exists an equilibrium T3 in G3 where t3i ≥ t1i ∀i.

If the i-th equality holds, then t1i = U .

Proof. We first prove the first statement and assume that ti > 0 ∀ i.

For convenience, we denote δi(X−i, xi) =
∂
∂ti
E[αi](T−i, ti)

∣∣∣
T−i=X−i, ti=xi

to be the slope

of expected reward of player i, when player i spends xi and the overall strategy profile

of all other players is X−i. We know that δi(X) is nonincreasing on xi (which comes

from EC-1) and increasing on every element in X−i (which comes from EC-2), and that

δi((T1)−i, t1i) = r̄1ri ∀i.

Suppose δi(0, 0) ≤ r̄2ri ∀i, then δi(0, y) ≤ δi(0, 0) ≤ r̄2ri ∀i, which means T = 0 is

16
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an equilibrium in G2. Otherwise there exists j such that δj(0, 0) > r̄2rj , which means

there exists z > 0 such that δj(0, z) = r̄2rj . Since r̄2 > r̄1, there exists y < t1j such

that δj((T1)−j, y) = r̄2rj . Consequently, δj(0, y) < δj((T1)−j, y) = r̄2rj , so z < y. Let

Br′ be the best response function in G2. Br′ is continuous, and we have that 0 < z =

Br′(0) < y = Br′((T1)−j) < t1j .

Though the best response function takes k − 1 arguments, we now limit the degree of

freedom to 1, by restricting the input vector to be parallel to (T1)−j . Let (βT1)−j be the

strategy profile of all graders except j that satisfies (βt1)i = β
U
t1i ∀i. Denote B̃r′(β) =

Br′((βT1)−j), then we have 0 < z = B̃r′(0) < y = B̃r′(U) < t1j ≤ U . By the fixed-

point theorem there exists at least one w ∈ (z, y) s.t. B̃r′(w) = w. This means there

exists an equilibrium in G2 where tj = w < t1j and ti = w
U
t1i < t1i ∀i ̸= j.

By the same method we can prove the equality cases. Furthermore, the second statement

can be proved analogously by comparing δi(U, U) to r̄3ri.

Equivalently, increasing the effective time-to-grade ratio distorts the equilibrium down-

wards, and vice versa; extreme equilibria are preserved if the environment is made even

more extreme. Suppose all functions are smooth, the equilibria will move continuously

with the fluctuation of r̄. In fact, r̄ is what the mechanism designer can really control. De-

creasing λ or M all leads to an increase of r̄, which “discourages” grading behavior and

moves all the equilibria downwards; while increasing either λ orM “encourages” grading

behavior, and moves all the equilibria upwards. Certainly, in practice λ and M cannot

be raised without limitation, which will be discussed in Section 6.

The above implications may seem trivial at a first glance; learners invest effort and

should get reward from that. However, we should point out again that our mechanism

works under a subtle limitation that instructors cannot perceive and evaluate the learners’

effort, but only the grading outcomes. Therefore whole mechanism employs a “reward

comes from outcomes” method. We have shown that, this method is as effective as an

ideal “reward comes from effort” scenario, and the idea of encouraging learners only by

rewarding their closeness to concensus is, game-theoretically, indeed effective.

Last, we can argue that all the above results in Section 3.1 and 3.2 will still hold even if
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the expected accuracy level mentioned in EC-1 is only weakly concave. While this means

that graders generally have multiple best responses to choose from, choosing the highest

effort level among those best responses does not violate rationality. Therefore the positive

reinforcement still exists, and all the other results follow. The only difference is that there

will be far more possible equilibria.

3.3 Settings That Meet the Encouraging Conditions

So far we still do not know under what settings of a UPG subgame that the encouraging

conditions will hold. In this section, we describe a series of practical settings of a UPG

subgame that satisfy both encouraging conditions. While the encouraging conditions are

rather strong, we show that they can be satisfied with some rational assumptions and a

simple mechanism.

The first question is how to characterize the peer-assessed grades. We assume the grade

to follow a normal distribution here, which is commonwhen characterizing an observation.

The mean will simply be the intrinsic value as we assume unbiased grading. The variance

depends on the amount of time. Intuitively, the more effort the grader puts in grading, the

closer the grade will be to the intrinsic value. Furthermore, the marginal effect should be

diminishing. Thus we assume the variance to be non-increasing and convex in the time

spent on grading. Notice this does not mean a grader can become arbitrarily precise if he

spends a very large amount of time on grading, since the above function may not be strictly

decreasing. For the mechanism, we use an averaging method to aggregate the grades. We

proved that, combined with any non-increasing piecewise continuous faccu(·), this setting

satisfies both encouraging conditions.

Definition 3.3. We define the averaging function to be favg(S) = 1
k

∑
j(Sj).

Proposition 3.4. Suppose that for every j, Fj(·, v, tj) ∼ N(v, g2j ) where gj = gj(tj) is

a non-increasing convex function. If fagg(·) = favg(·), faccu(·) is non-increasing piece-

wise continuous, then for any values of (M,k, r, U, λ), (M,k, r, U, λ, fg, fagg(·), faccu(·))

satisfies both EC-1 and EC-2.
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To prove this proposition, we start by proving a weaker proposition where faccu(·) is

limited to a threshold function, which means full mark is given once a learner gives a grade

not too far off from the consensus. Then we extend the proposition to the general case.

Definition 3.4. We define the h-threshold awarding function to be fh(x) = 1 if x ≤ h for

some threshold value 0 ≤ h < ∞, and fh(x) = 0 otherwise.

Proposition 3.5. Suppose that for every j, Fj(·, v, tj) ∼ N(v, g2j ) where gj = gj(tj) is a

non-increasing convex function. If fagg(·) = favg(·), faccu(·) = fh(·) for some 0 ≤ h <

∞, then for any values of (M,k, r, U, λ), (M,k, r, U, λ, fg, fagg(·), faccu(·)) satisfies both

EC-1 and EC-2.

Proof. To simplify notations let g(·) = gj(·). Since Sj follows a normal distribution,

Ŝ = 1
k
ΣjSj also follows a normal distribution. Consider player j. Let the distribution of

other graders’ average score to be Fo = 1
k−1

∑
i̸=j

Si ∼ N(v, x2), then the aggregated score

is given by

Ŝ = favg(S) =
1

k

∑
i

Si =
1

k
Fj +

k − 1

k
Fo,

the distance to the aggregated score is given by

Sj − Ŝ = Fj − Ŝ =
k − 1

k
(Fo − Fj) ∼ N(0,

k − 1

k
(x2 + g2)),

and the expected accuracy is given by

E[αj](T−j, t) = E[fh(|Sj − Ŝ|)]

= Pr[|Sj − Ŝ| ≤ h]

= erf( h√
(k−1)(x2+g2)

k

)

= erf( h
√
k√

(k − 1)(x2 + g2)
).

By definition, g′(tj) ≤ 0, g′′(tj) ≥ 0.
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Let the effective error threshold p = h
√
k√

(k−1)(x2+g2)
, then

∂p

∂t
=

h
√
k√

k − 1

g(−g′)

(x2 + g2)
3
2

≥ 0

∂

∂t
E[αj](T−j, t) =

∂

∂t
erf(p) = (

2√
π
e−p2)

∂p

∂t
≥ 0

∂2

∂t2
E[αj](T−j, t) =

∂

∂t
(
2√
π
e−p2)

∂p

∂t

= (
2√
π
e−p2)((−2p)

∂p

∂t
+

h
√
k√

k − 1
(
−(g′)2 + gg′′

(x2 + g2)
3
2

− 3g2(g′)2

(x2 + g2)
5
2

))

≤ 0.

The last inequality follows from the fact that g′(tj) is non-positive and g′′(tj) is non-

negative. Let T−j and T ′
−j be two strategy profiles satisfying tp < t′p for some p, and

tq = t′q∀q ̸= p. Let Fo1 = 1
k−1

∑
i̸=j

Si ∼ N(v, x2
1) and Fo2 = 1

k−1

∑
i̸=j

Si ∼ N(v, x2
2)

be respectively the other grader’s average score distribution in both cases. Also let the

corresponding effective error thresholds be p1 = h
√
k√

(k−1)(x2
1+g2)

and p2 = h
√
k√

(k−1)(x2
2+g2)

.

Clearly, x1 > x2, which implies p1 < p2. Then we have

∂

∂t
(E[αj](T−j, t)− E[αj](T

′
−j, t)) =

∂

∂t
(erf(h1)− erf(h2))

= (
2√
π
e−p21)

∂p1
∂t

− (
2√
π
e−p22)

∂p2
∂t

= (
2√
π

(k − 1)g(−g′)

h2k
)(
e−p21

p31
− e−p22

p32
)

≤ 0.

The first term, 2√
π
(k−1)g(−g′)

h2k
, is non-negative since g is a non-increasing non-negative

function. Since ∂
∂p

e−p2

p3
= − e−p2 (2p2+3)

p4
≤ 0, the second term is an definite integral of a

non-positive function, so it is non-positive. Hence the product of the two terms is non-

positive.

Any non-increasing piecewise continuous function can be decomposed into combi-

nation of integrals of threshold functions. For each threshold function, the portion of

expected utility given by it satisfies EC-1. The expected utility is now combination of
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integrals of non-decreasing and concave functions, thus being non-decreasing and con-

cave itself [2]. Similarly, in the condition in EC-2, the combination of integrals of error

functions from the latter strategy profile always increases more rapidly then that from the

former profile.

Again, all the grading distributions need not to be the same. We showed that as long

as every grader’s distribution is a normal distribution with a variance non-increasing with

his effort, both encouraging conditions will be satisfied.
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Chapter 4

Homogeneous Grading

Along with the development of MOOCs, another form of online learning environments

in the name of SPOCs has also emerged [10]. Small Private Online Courses has at most

several hundreds of qualified learners. With an eye on better learning experiences, a SPOC

may require learners to pass tests, complete prerequisites, or even require student status

of the relating institutes, used as material in a blended-learning course. The diversity

of learners is drastically decreased in this type of learning environments. While grading

several hundreds of copies of assignments may not be impossible, it is still tedious and

requires massive effort. Plus all its merits, peer grading can still be used in SPOCs.

Corresponding to this type of environment where the learners are more homogeneous

than before, in this chapter we focus on a further limited case of our model, where the peer

graders not only share identical grading abilities but also value their time identically. We

show that all possible pure Nash equilibria in this scenario share a common property: a

submission is graded with the same level of effort by every grader. While this is still an

ideal scenario, we can learn from it what homogeneity brings to our model.

Definition 4.1. A homogeneous unbiased peer grading subgame, or HUPG subgame, is

a UPG subgame satisfying the following properties:

• f1 = f2 = ... = fk = f , where f is the shared grading probability distribution.

• ri = r2 = ... = rk = r, where r is the shared time-to-grade ratio.

23



doi:10.6342/NTU201701049

When both encouraging conditions are met in an HUPG subgame, we found that in

equilibrium it is impossible for two learners to put in different levels of effort. Informally,

in such an equilibrium the low-effort learner’s peers puts more effort in total than the high-

effort one’s peers. This means the low-effort learner would like to put in more effort than

the high-effort learner as well, which leads to a contradiction. Consequently, we found

that a submission is graded with the same level of effort by every grader, as described in

the following theorem.

Theorem 4.1. Suppose that EC-1 and EC-2 are both satisfied in an HUPG subgame. If

T ∗ = {t∗1, t∗2, ..., t∗k} is a pure Nash equilibrium, then t∗1 = t∗2 = ... = t∗k = t∗.

Proof. Assume the contrary. Then there must exist t∗i < t∗j for some i ̸= j. Considering

the strategy profiles T−i and T−j , we have

∂

∂t
E[α](T−j, t)

∣∣∣∣
t∗i

≥ ∂

∂t
E[α](T−j, t)

∣∣∣∣
t∗j

(EC-1)

≥ kr

λM

≥ ∂

∂t
E[α](T−i, t)

∣∣∣∣
t∗i

(Lemma 3.1)

>
∂

∂t
E[α](T−j, t)

∣∣∣∣
t∗i

, (EC-2)

which is a contradiction.

Combining with the previous result that a pure NE always exists, we immediately have

the following corollary. However we give a direct proof here.

Corollary 4.1.1. In any HUPG subgame that satisfies both encouraging conditions, there

exists at least one equilibrium where t∗i = t∗,∀i.

Proof. Let T−i(p) be a strategy profile with tj = p∀j ̸= i. By applying the property EC-2,

we have ∂
∂t
E[αi](T−i(p), t) <

∂
∂t
E[αi](T−i(q), t) iff p < q. Denote t∗i (p) to be player i’s
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best response with respect to T−i(p). Consider t∗i (0) and t∗i (U). If either t∗i (0) = 0 or

t∗i (U) = U , we have a trivial equilibrium where t∗ = 0 or t∗ = U . Suppose not, then there

are four cases:

• 0 < t∗i (0) < U, t∗i (U) = 0. By lemma 3, we have

∂

∂t
E[αi](T−i(0), t)]

∣∣∣∣
t∗i (0)

=
kr

λM

>
∂

∂t
E[αi](T−i(U), t)

∣∣∣∣
t∗i (0)

>
∂

∂t
E[αi](T−i(0), t)

∣∣∣∣
t∗i (0)

,

which is a contradiction.

• t∗i (0) = U, 0 < t∗i (U) < U . Similarly, we have

∂

∂t
E[αi](T−i(0), t)

∣∣∣∣
t∗i (U)

>
kr

λM

=
∂

∂t
E[αi](T−i(U), t)

∣∣∣∣
t∗i (U)

>
∂

∂t
E[αi](T−i(0), t)

∣∣∣∣
t∗i (U)

,

which is a contradiction.

• t∗i (0) = U, t∗i (U) = 0. We have

∂

∂t
E[αi](T−i(0), t) >

kr

λM
>

∂

∂t
E[αi](T−i(U), t) >

∂

∂t
E[αi](T−i(0), t)

for all t ∈ [0, U ], which is also a contradiction.
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• 0 < t∗i (0), t
∗
i (U) < U . This gives

∂

∂t
E[αi](T−i(0), t)

∣∣∣∣
t∗i (0)

=
kr

λM

=
∂

∂t
E[αi](T−i(U), t)

∣∣∣∣
t∗i (U)

>
∂

∂t
E[αi](T−i(0), t)

∣∣∣∣
t∗i (U)

.

The only possible case is the last one, as the other three all result in contradictions.

Since all of the above functions are non-increasing in t, we obtain t∗i (U) > t∗i (0) from

the last inequality. Notice that in this case, ∂
∂ti
E[αi](T−i(x), ti)

∣∣∣
t∗i (x)

= kr
λM

holds for all

possible x including boundaries.

Define the best response function Br(x) = t∗i (x). Since f, fagg(·), faccu(·) are all

continuous,Br(·) is continuous in x. Observed that 0 < Br(0) < Br(U) < U , the fixed-

point theorem applies. Hence there exists x ∈ (Br(0), Br(U)) s.t. Br(x) = x, which

gives the equilibrium t∗ = x.

Since an HUPG subgame is a special case of a UPG subgame, Theorem 3.3 still holds

in this scenario. Moreover, all the pure NEs can be directly computed. Denote δ(x) to be

the slope of expected reward of player i when all players puts in x unit of effort, which

is equivalent to δ(x, x) in the proof of Theorem 3.3, then if t∗ = x is an equilibrium,

δ(x) = r̄ or x ∈ {0, U}. We can find all the equilibria by finding all roots of δ(x) = r̄

and checking if either possible extreme equilibria exists.
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Chapter 5

Peer Grading with Irrational Players

So far we have assumed that all learners rationally seek to maximize their own expected

utilities. However, this behavior model does not fully describe all possible behaviors of

a learner, as we often see in real courses. First, dropouts are way too common in today’s

MOOCs that researchers usemachine learning techniques to predict them [12,14]; learners

who drop out will not finish grading. Next, some learners may have already accumulated

sufficient points to pass the course. Extra points may not serve as motivation if they do not

affect whether the course is passed. There might also be devoted learners who feel obliged

to put maximum effort in each task. As proposed in [18], we may need extra graders on

some particular assignments, who can be a TA, who has nothing to do with the rewards

and will always put sufficient amount of effort into grading.

Here we define a modified game model, in which some of the players do not seek

maximized utility. We assume that such players have different utility valuations, and will

decide their effort levels independent of whatever the others do. We assume that the effort

levels are known to all other players in the game. We show that given this information,

the behavior of all rational graders should resemble our findings in the previous sections.

Definition 5.1. In a UPG subgame with irrational players, there are k total graders.

Graders a1 to ak′ are rational players as before with time-to-grade ratios r1 to rk′; for

k′ + 1 ≤ i ≤ k, grader ai will simply put effort ci regardless of what the others do. All

values of ci are public information. All other parts in the model remain unchanged. We
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define the constant effort vector C = [ci]. We call it an HUPG subgame with irrational

players if r1 = r2 = ... = rk′ .

Suppose the encouraging conditions are satisfied. We observe that Theorem 3.3 still

holds here, as the value of r̄ still affects the effort levels in equilibria. Besides, they are also

influenced by the irrational graders’ efforts. It is rather intuitive that all rational graders

will raise their efforts once an irrational grader raises his effort level, and vice versa. The

designer can influence the equilibria if he can influence the irrational graders as well.

For simplicity, we will now omit the constant strategies by the irrational graders and

use t = [t1, t2, ..., tk′ ] to represent the rational graders’ strategies in an equilibrium. The

following theorem can be proved analogously to Theorem 3.3.

Theorem 5.1. Assume k and k′ are fixed. Suppose both EC-1 and EC-2 are satisfied in a

UPG subgame G1 with irrational players playing strategies C, and r̄ = r1. If T1 = [t1i]

is an equilibrium in G1, then:

• For a UPG subgame G2 that differs with G1 only in r̄ = r2 > r1, there exists an

equilibrium where t2i ≤ t1i ∀ i.

If the i-th equality holds, then t1i = 0.

• For a UPG subgame G3 that differs with G1 only in r̄ = r3 < r1, there exists an

equilibrium where t3i ≥ t1i ∀ i.

If the i-th equality holds, then t1i = U .

• For a UPG subgame G′ that differs with G1 only in c′i < ci for an irrational player

ai, there exists an equilibrium T ′ where t′i ≤ t1i ∀ i.

If the i-th equality holds, then t1i = 0.

• For a UPG subgameG′′ that differs withG1 only in c′′i > ci for an irrational player

ai, there exists an equilibrium T ′′ where t′′i ≥ t1i ∀ i.

If the i-th equality holds, then t1i = U .

The first two results are analogous to Theorem 3.3. In the third situation, since there

exists some c′i < ci, by EC-2 we have δ′(x,C) < δ1(x,C)∀x ∈ [0, U ]. This effect is
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similar to have r̄ raised by the difference of the two functions, though this amount depends

on x. However, we did not need the precise amount to get the first two results; all we

needed is the fact that r̄ is increased. As a consequence all equilibria moves downwards,

as in the first situation. Analogously, the last situation is similar to the second situation.

Similarly, in the homogeneous case Theorem 4.1 still holds as follows:

Theorem 5.2. Suppose encouraging conditions are satisfied in an HUPG subgame with

k′ rational players. If T ∗ is a Nash equilibrium, then t∗1 = t∗2 = ... = t∗k′ = t∗. There

exists at least one such equilibrium.

The proof is very similar to that in Chapter 4, except for we can only limit our com-

parisons among the rational players’ strategies. The decision process of one grader does

not take into account whether the other graders are rational, but only their actions. Analo-

gous to the proof in Chapter 4, we can show that it is still impossible for a pair of rational

players to give different level of effort. The irrational players can be viewed as a part of

the “environment”.

However, the equilibria level does not remain the roots of δ(t∗) = r̄, since the irrational

players do not all gives t∗ units of time. We will need to consider those effort levels.

Let δ(x,C) = ∂
∂ti
E[αi](T−i(x), ti)

∣∣∣
ti=x

be the slope of expected rewards for a rational

grader when all rational graders puts in x units of effort, and the irrational graders follow

their predefined strategies. The non-extreme equilibria can now be calculated by solving

δ(x,C) = r̄, and the extreme ones can be found by checking the values of δ(0,C) and

δ(U,C).

It appears that the mechanism designer has even more power in this scenario, since he

can now influence the equilibria through the irrational players. However there is a caveat:

all the irrational players’ strategies must be public, which might not be practical aside of

announcing what the TAs will do. Nonetheless, we can still expect the rational players

to adjust their behavior based on their observations and expectations about the irrational

players, like correctly forecasting some peers to stop putting effort towards the end of the

course.
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Chapter 6

Discussion and Future Work

6.1 Other Game Settings

Our model is very flexible as the mechanism designer can dictate all of the parameters and

functions, i.e. M,k, λ, fagg(·), faccu(·). While we know that the first three parameters have

no effect on whether the encouraging conditions are satisfied, there are many aggregating

and accuracy-calculating functions that can be plugged in. As mentioned in Chapter 2,

Crowdgrader [6] utilizes the Olympic average of all scores to determine the aggregated

grade, and Coursera uses the median [5]. While we proved that an average function paired

with almost all reasonable accuracy-calculating function will do the trick, whether the

other aggregating methods can satisfy the encouraging conditions are still unknown.

6.2 Setting Up the Parameters in Practice

We know that both increasing M and λ can encourage more effort on grading. In theory,

one can makeM and λ as large as possible, as this induces maximum effort possible from

the learners. But maximizing M means that letting the relevant assignment account for

one hundred percent of the grades in the course, while maximizing λmeans the final grade

of the assignment come exclusively from peer grading accuracy. Learners will simply stop

doing assignments if all their utilities come from their grades this way.

Since the assessment rules should reflect the learning goals, the best ratio should be
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determined by how important the course provider thinks about the skills learners get from

doing peer grading. While the goals are subjective, the benefits from doing peer grading

should not be neglected, and the course provider can keep in mind that the more peer-

grading reward weighs, the more effort it induces. Teachers and lecturers commonly offer

bonus points corresponding to skills beyond their teaching goals only to stimulate learning

motivation, and rewarding accurate peer grading can be viewed alike.

Finally, in some of the current MOOCs the idea of learning goals are taken to extreme

so that there are no final grades in them. Learners only pass the course by finishing all

the requirements or they do not. Often the requirements are still assessed to determine

if a particular level is reached, and one can still utilize our ideas in them. Learners may

even have a greater chance to remain a rational grader throughout the course in this situ-

ation. Experimental and empirical studies will be needed to find the real influence of the

parameters on not only the grading accuracy but also the learning effect as well.

6.3 Average Amount of Graders

In the dynamics of equilibria we have always kept k (and k′, if irrational players exist)

fixed. While it is clear that increasing k will also increase r̄ and trigger the subsequent

effects, it influences the equilibria in another way; that is, the size of the “environment”

increases as well. Even we fix all the graders’ effort levels, the probabilistic distribution

of the other graders’ aggregated score will not remain the same if the number of graders

fluctuate. To be more explicit, when k is increased, that distribution tends to become more

dense around the mean, and the crowd opinion is more accurate thanks to a larger crowd

size. Such effect is similar to have the others increase their efforts and will encourage

the graders to put more effort as well, in contrast to its effect on r̄. Thus the influence

of tuning k is more complicated then that of M and λ. It is not clear which side of the

effects outweighs another in various model settings, and it is intuitive that both situations

are possible given the flexibility of our model.

The best amount of graders appointed to grade one submission is long-discussed, and

the consensus suggests around three to six graders is enough [4, 9, 17], as it takes at least

32



doi:10.6342/NTU201701049

several graders to make the aggregation sufficiently accurate. While intuitively more

graders results in more accurate aggregation, now we found that too much graders may

not do well if accuracy is rewarded. There are no previous experiments focusing on this

amount with accuracy rewarded. One such experiment is not very hard to setup given the

existing platforms like that in [6].

6.4 Unbalanced Peer Grading Tasks

It is assumed that k is a hard rule determined by the course provider. Our model does not

handle unfinished grading tasks, since they are different with giving a zero grade. Also, in

current MOOCs platforms it is possible for learners to actively ask for more peer grading

tasks. From the perspective of course providers, such requests should be welcomed.

One interesting question is what will happen if we ease the hard limit on k. The course

provider can let learners decide themselves how many copies of assignments they would

like to grade; perhaps the relevant reward can be granted in a linear way. To further in-

vestigate this scenario, we must make clear how to arrange the grading relations once the

limit on k is removed. If a learner asks for a new assignment to grade, which one does the

system select? How to aggregate the concensus if the assignments are graded by different

amount of learners?

Suppose somehow the grading tasks can be arranged somewhat equally so that ev-

ery assignment is still graded by almost identical amount of learners. What will be the

learners’ rational behaviors? Will everyone grade identical copies of assignments in the

homogeneous case? Does the course provider still have the power to induce more efforts

on grading by tuning parameters? These will be interesting questions to explore.
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6.5 Towards Biased Grading

So far we assume that undergrading and overgrading happen equally likely. However,

Sadler and Good [19] suggested that peer-grading tends to undergrade, at least compared

to self-grading; Freeman [11] suggested peer-grading can sometimes overgrade, especially

on harder stuff, likely due to the learners’ inability to find subtle mistakes. Piech et al. [18]

tried to exploit the biases of graders to aggregate more accurate scores.

Theoretically, such biases can be measured from all the peer grading records of any

given learner, as large MOOC platforms keep user data efficiently. This gives the pos-

sibility to preprocess the peer grades, hopefully to eliminate the bias before aggregating

them. However, statistically the biases may take too long to stabilize. A learner can show

different grading bias in different courses as well, as biases are somewhat related to learn-

ers’ ability. One can even argue that it is inappropriate to use past grading performances

to determine future grading bias; the learner might start putting more effort anytime, for

example. The troublesome grading biases need to be considered carefully in practice.

Our analysis and results will remain intact if all the graders have homogeneous bias.

This is intuitive, since all the accuracy measurements comes from comparison between a

single grade and the consensus grade. However it will not be the case if the graders are

biased heterogeneously. Analysis can be made if the biases of learners can be approxi-

mated by probabilistic distributions; for example, in [18] learners are assumed to have a

random bias following a normal distribution. An interesting question is whether the en-

couraging conditions will remain satisfied, if the learners become biased, but unbiased in

expectation.

6.6 Concensus Grading

We utilize concensus grading throughout our model. One can decide the definitions of

concensus: the average, the median, or even the majority of a Yes/No question. But we

should keep in mind that all these measurements are merely aggregates of individual grad-

ing outcomes, and individual grading outcomes are impossible to be fully objective. We
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cannot expect objectivity in peer grading, which is why we should use peer grading care-

fully and with limitation. However, most of the time crowd subjectivity is the best we can

do, as instructors may not be able to offer objectivity as well.
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