Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2497
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳政忠
dc.contributor.authorYi-Han Liaoen
dc.contributor.author廖翊涵zh_TW
dc.date.accessioned2021-05-13T06:41:00Z-
dc.date.available2018-01-04
dc.date.available2021-05-13T06:41:00Z-
dc.date.copyright2018-01-04
dc.date.issued2017
dc.date.submitted2017-11-13
dc.identifier.citation[1] D. A. Bies and C. H. Hansen, Engineering noise control: theory and practice: CRC press, 2009.
[2] Y. A. Ilinskii, B. Lipkens, and E. A. Zabolotskaya, 'Energy losses in an acoustical resonator,' The Journal of the Acoustical Society of America, vol. 109, pp. 1859-1870, 2001.
[3] D. T. Blackstock, Fundamentals of Physical Acoustics: Wiley, 2000.
[4] H. Von Helmholtz, On the Sensations of Tone as a Physiological Basis for the Theory of Music: Longmans, Green, 1912.
[5] U. Ingard, 'On the theory and design of acoustic resonators,' The Journal of the acoustical society of America, vol. 25, pp. 1037-1061, 1953.
[6] A. Norris and G. Wickham, 'Elastic Helmholtz resonators,' The Journal of the Acoustical Society of America, vol. 93, pp. 617-630, 1993.
[7] A. Selamet, P. M. Radavich, N. Dickey, and J. Novak, 'Circular concentric Helmholtz resonators,' The Journal of the Acoustical Society of America, vol. 101, pp. 41-51, 1997.
[8] M. Alster, 'Improved calculation of resonant frequencies of Helmholtz resonators,' Journal of Sound and Vibration, vol. 24, pp. 63-85, 1972.
[9] A. Selamet and I. Lee, 'Helmholtz resonator with extended neck,' The Journal of the Acoustical Society of America, vol. 113, pp. 1975-1985, 2003.
[10] S. Tang, 'On Helmholtz resonators with tapered necks,' Journal of Sound and Vibration, vol. 279, pp. 1085-1096, 2005.
[11] X. Wu, C. Fu, X. Li, Y. Meng, Y. Gao, J. Tian, et al., 'Low-frequency tunable acoustic absorber based on split tube resonators,' Applied Physics Letters, vol. 109, p. 043501, 2016.
[12] S. Kim, Y.-H. Kim, and J.-H. Jang, 'A theoretical model to predict the low-frequency sound absorption of a Helmholtz resonator array,' The Journal of the Acoustical Society of America, vol. 119, pp. 1933-1936, 2006.
[13] Z. G. Wang, S. H. Lee, C. K. Kim, C. M. Park, K. Nahm, and S. Nikitov, 'Acoustic wave propagation in one-dimensional phononic crystals containing Helmholtz resonators,' Journal of Applied Physics, vol. 103, p. 064907, 2008.
[14] M. Xu, A. Selamet, and H. Kim, 'Dual Helmholtz resonator,' Applied Acoustics, vol. 71, pp. 822-829, 2010.
[15] A. Sanada and N. Tanaka, 'Extension of the frequency range of resonant sound absorbers using two-degree-of-freedom Helmholtz-based resonators with a flexible panel,' Applied Acoustics, vol. 74, pp. 509-516, 2013.
[16] J.-P. Groby, C. Lagarrigue, B. Brouard, O. Dazel, V. Tournat, and B. Nennig, 'Enhancing the absorption properties of acoustic porous plates by periodically embedding Helmholtz resonators,' The Journal of the Acoustical Society of America, vol. 137, pp. 273-280, 2015.
[17] H. Long, Y. Cheng, J. Tao, and X. Liu, 'Perfect absorption of low-frequency sound waves by critically coupled subwavelength resonant system,' Applied Physics Letters, vol. 110, p. 023502, 2017.
[18] A. Selamet, M. Xu, I.-J. Lee, and N. Huff, 'Helmholtz resonator lined with absorbing material,' The Journal of the Acoustical Society of America, vol. 117, pp. 725-733, 2005.
[19] D.-Y. Maa, 'Theory and design of microperforated panel sound-absorbing constructions,' Scientia Sinica, vol. 18, pp. 55-71, 1975.
[20] D.-Y. Maa, 'Potential of microperforated panel absorber,' the Journal of the Acoustical Society of America, vol. 104, pp. 2861-2866, 1998.
[21] C. H. Sohn and J. H. Park, 'A comparative study on acoustic damping induced by half-wave, quarter-wave, and Helmholtz resonators,' Aerospace Science and Technology, vol. 15, pp. 606-614, 2011.
[22] X. Cai, Q. Guo, G. Hu, and J. Yang, 'Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators,' Applied Physics Letters, vol. 105, p. 121901, 2014.
[23] Y. Li and B. M. Assouar, 'Acoustic metasurface-based perfect absorber with deep subwavelength thickness,' Applied Physics Letters, vol. 108, p. 063502, 2016.
[24] L. E. Kinsler, Fundamentals of acoustics: Wiley, 1982.
[25] ASTM E1050-08, ' Standard test method for impedance and absorption of acoustical materials using a tube, two microphones and a digital frequency analysis system.'
[26] J. Allard and N. Atalla, Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials 2e: Wiley, 2009.
[27] M. R. Stinson, 'The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross‐sectional shape,' The Journal of the Acoustical Society of America, vol. 89, pp. 550-558, 1991.
[28] COMSOL Multiphysics, 'Acoustics module user guide version 4.2,' User’s manual, 2011.
[29] J. D. Anderson and J. Wendt, Computational fluid dynamics vol. 206: Springer, 1995.
[30] P. M. Morse and K. U. Ingard, Theoretical acoustics: Princeton university press, 1968.
[31] R. G. Campbell, Foundations of fluid flow theory: Addison-Wesley Publishing Company, 1973.
[32] G. K. Batchelor, An introduction to fluid dynamics: Cambridge university press, 2000.
[33] B. Li, A. J. Laviage, J. H. You, and Y.-J. Kim, 'Harvesting low-frequency acoustic energy using quarter-wavelength straight-tube acoustic resonator,' Applied Acoustics, vol. 74, pp. 1271-1278, 2013.
[34] M. A. Pillai and D. Ezhilarasi, 'Improved Acoustic Energy Harvester Using Tapered Neck Helmholtz Resonator and Piezoelectric Cantilever Undergoing Concurrent Bending and Twisting,' Procedia Engineering, vol. 144, pp. 674-681, 2016.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2497-
dc.description.abstract聲波是經由固體振動對空氣擾動進而產生的,每個人對於聲音的感受不盡相同,不悅耳的聲音皆可稱為噪音。近年來噪音影響人們生活的新聞層出不窮,包括風力發電、機場捷運、高架鐵路等交通噪音,皆為急需克服的問題。
  空氣於空腔型結構內共振時,邊界層的熱黏滯效應能有效地引起能量損失,可作為吸音板的用途。本文所採用的吸音結構為四分之一波長共振器,即第一共振頻率的波長為管長的四倍。首先,分別以聲阻抗的觀點與有限元素法的途徑分析四分之一波長共振器之幾何形狀與吸收頻率的對應關係,由於阻抗分析在熱黏滯效應上的簡化,兩者得到的結果有些微的差異,因此針對阻抗匹配法提出長度的修正公式。薄型化則是參考Cai提出的設計,將原本的直管盤繞而成螺旋狀共振腔,可大幅減低其厚度,接著以同樣的模擬方式確認四分之一波長共振腔與薄型吸音板的相關性後,並進一步提出雙螺旋共振腔的設計,使吸音頻寬大幅增加。
  本研究經現場量測得知臺灣桃園國際機場聯外捷運系統於新北環河快速道路與疏洪東路一段轉彎處之噪音頻率為467 Hz,合適的共振腔長度為177 mm,開口率為0.017,以3D列印機印製此形狀的吸音薄板。實驗則根據美國材料試驗協會(ASTM)所提出的測試規範操作,以壓克力自行製作聲學阻抗管,搭配雙麥克風轉移函數法量測吸音薄板的吸音效率。實驗所得到的最大吸收係數為0.91,阻抗匹配法則為0.99,而實驗上擁有最大吸收率之頻率為473 Hz,阻抗匹配法則為468 Hz,主要吸收頻率的誤差為1.06 %,證實修正後的阻抗匹配法可以作為薄型吸音板的設計準則,免去有限元素法計算量過大的限制。而雙螺旋共振腔的設計也能大幅增加吸音頻寬,若兩共振腔的長度分別為170與181 mm,吸收係數達0.5以上的頻寬範圍由單共振腔的30 Hz增大至54 Hz。
zh_TW
dc.description.abstractSound is produced by a variety of pressure disturbance that can produces the sensation of hearing. The sensation of sound varies from person to person. Unpleasant sound can be judged as noise. In recent years, there have been a lot of news about noise reducing the quality of life, including wind turbine, airport MRT, and other traffic noise. All of them are urgent problems.
  When air is resonant in the cavity structure, the thermal viscous effect of the boundary layer can effectively cause energy loss and cavity can be used as a sound absorbing plate. The quarter-wave resonator means wavelength of the first resonant frequency is four times of the length of the tube. First, impedance matching method and finite element method are employed to calculate the absorption coefficient of quarter-wave resonators. Since the impedance analysis is simplified on the thermal viscous effect, the length has to be modified.
  By refering to the design proposed by Cai, the quarter-wave resonator is coiled up into coplanar spiral resonator, which can significantly reduce the thickness and its absorption coefficient is similar to quarter-wave resonator through the simulation method. To broaden the bandwidth of absorbing frequency, thin panel with two resonant cavities is proposed.
  In this study, the noise frequency of Taiwan Taoyuan International Airport Access MRT System at the corner of New Taipei Huanhe Expressaway and Sec. 1, Shuhong E. Rd. is 467 Hz by measurement on site. The appropriate cavity length is 177 mm and porosity is 0.017. The sample with this geometry is fabricated by 3D printing. According to standard test method of ASTM, the absorption coefficient of thin panels had been measured with a tube and two microphones in experiment. The max absorption coefficient is 0.91 at 473 Hz in experiment, and the modified impedance matching method is 0.99 at 468 Hz. The error of main absorption frequency is 1.06 %. Modified impedance matching method can be a design rule for sound absorbing thin panels, to avoid the limitation of calculation in finite element method. The thin panel with dual resonant cavities can also broaden the absorption bandwidth. If the length of two resonators is 170 and 181 mm, the bandwidth of absorption coefficient more than 0.5 increases from 30 Hz in single resonator to 54 Hz.
en
dc.description.provenanceMade available in DSpace on 2021-05-13T06:41:00Z (GMT). No. of bitstreams: 1
ntu-106-R04543007-1.pdf: 3495300 bytes, checksum: bbbaf223fd3b1ec108229e660f172f91 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents致謝 I
中文摘要 II
ABSTRACT III
目錄 V
表目錄 VIII
圖目錄 IX
符號對照表 XII
第一章 導論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 章節介紹 3
第二章 聲學原理 4
2.1 聲波方程式 4
2.1.1 狀態方程式 4
2.1.2 連續方程式 5
2.1.3 尤拉方程式 6
2.1.4 聲波方程式 8
2.2 阻抗管內的波傳現象 8
2.2.1 平面波之介紹 9
2.2.1 波導管之截止頻率 9
2.2.3 阻抗管量測吸音係數之原理 12
2.3 阻抗匹配對吸收率之影響 13
2.3.1 聲阻抗之介紹 13
2.3.2 反射係數與穿透係數 15
2.3.3 四分之一波長共振腔之阻抗分析與吸收率 16
第三章 四分之一波長共振器之吸收率模擬方法 24
3.1 聲熱模組之統御方程式 24
3.1.1納維-斯托克斯方程式 24
3.1.2 能量方程式 26
3.2 邊界層之介紹 29
3.2.1 黏滯邊界層 29
3.2.2 熱邊界層 30
3.3 收斂性分析 30
3.3.1 軸對稱模型 30
3.3.2 三維模型 31
3.4 能量損失分布 32
3.5 四分之一波長管內的聲壓、粒子速度及溫度分布特徵 33
3.6 共振腔幾何與吸音係數之關係 34
3.7 阻抗匹配法與有限元素法之比較與設計準則 35
第四章 寬頻吸音薄板之設計與實驗量測 54
4.1 研究場域 54
4.2 寬頻吸音薄板的設計 54
4.2.1 吸音薄板與四分之一波長共振器之比較 54
4.2.2 吸音薄板之寬頻化設計 56
4.3 寬頻吸音薄板吸音效率之量測 56
4.3.1 實驗裝置之建立 56
4.3.2 薄型吸音板吸音效率之量測 58
第五章 結果討論與未來展望 80
5.1 結論 80
5.2 未來展望 81
參考文獻 82
dc.language.isozh-TW
dc.subject寬頻吸音薄板zh_TW
dc.subject四分之一波長共振器zh_TW
dc.subject聲阻抗分析zh_TW
dc.subject吸音係數zh_TW
dc.subjectAcoustic impedance analysisen
dc.subjectBroadband sound-absorbing panelen
dc.subjectAbsorption coefficienten
dc.subjectQuarter-wave resonatoren
dc.title四分之一波長共振腔之寬頻吸音薄板研究zh_TW
dc.titleQuarter-wavelength resonator-based thin panels
for absorbing broadband audio waves
en
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳永裕,孫嘉宏,陳蓉珊,鮑世勇
dc.subject.keyword四分之一波長共振器,聲阻抗分析,吸音係數,寬頻吸音薄板,zh_TW
dc.subject.keywordQuarter-wave resonator,Acoustic impedance analysis,Absorption coefficient,Broadband sound-absorbing panel,en
dc.relation.page84
dc.identifier.doi10.6342/NTU201704363
dc.rights.note同意授權(全球公開)
dc.date.accepted2017-11-13
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf3.41 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved