Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2452
Title: | 超幾何算子之 ZETA 行列式 ZETA Determinant of Hypergeomertic Equation via Ramanujan’s Identity |
Authors: | Zhong Tang Wu 吳宗堂 |
Advisor: | 謝春忠(Chun-Chung Hsieh) |
Co-Advisor: | 陳其誠(Ki-Seng Tan) |
Keyword: | 高斯超幾何方程,Zeta 行列式,正則奇異施圖姆-劉維爾算子,拉馬努金公式,closed form, Hypergeometric equation,Sturm-Liouville form,Zeta determinant,Regular Singular Sturm-Liouville operators., |
Publication Year : | 2017 |
Degree: | 碩士 |
Abstract: | 本文研究高斯超幾何方程的施圖姆-劉維爾形式及其Zeta 行列式.基於Lesch 給出以wronskian 表示正則奇異施圖姆-劉維爾算子之Zeta 行列式的公式,以及拉馬努金的某項公式,便得出本文的主要結果: 超幾何方程之施圖姆-劉維爾形式的Zeta 行列式之closed form. In the thesis, the eignevalue probelm of the Hypergeometric equation(for short: HGE or E(a,b,c)) is discussed. There are three parts in this thesis.First of all, I introduce some heuristic backgrounds and motivations of the eigenvalue problem of HGE. The second part is a survey about the theory of the HGE. Finally, based on Lesch’s formula of zeta determinant of Regular Singular Sturm-Liouville Operators, I calculate the zeta determinant with repect to the Sturm-Liouville form of HGE operator on a closed interval, by using Ramanujan's identities. |
URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2452 |
DOI: | 10.6342/NTU201701882 |
Fulltext Rights: | 同意授權(全球公開) |
Appears in Collections: | 數學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-106-1.pdf | 794.65 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.