Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24357
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor陳基旺
dc.contributor.authorYin-Ling Weien
dc.contributor.author魏吟玲zh_TW
dc.date.accessioned2021-06-08T05:23:05Z-
dc.date.copyright2005-08-18
dc.date.issued2005
dc.date.submitted2005-07-25
dc.identifier.citationInformation received from the Internet Homepages of the Department of Health, Taiwan, R.O.C.(http://www.doh.gov.tw).
Eckhardt, S. Recent progress in the development of anticancer agents. Curr. Med. Chem. Anti-Canc. Agents 2002, 2, 419-439.
Nam, N.-H.; Parang, K. Current targets for anticancer drug discovery. Curr. Drug Targets 2003, 4, 159-179.
Sridhar, S. S.; Shepherd, F. A. Targeting angiogenesis: a review of angiogenesis inhibitors in the treatment of lung cancer. Lung Cancer 2003, 42, Suppl 1:S81-91.
Rosenbaum, E.; Zahurak, M.; Sinibaldi, V.; Carducci, M. A.; Pili, R.; Laufer, M.; DeWeese, T. L.; Eisenberger, M. A. Marimastat in the treatment of patients with biochemically relapsed prostate cancer: a prospective randomized, double-blind, phase I/II trial. Clin. Cancer Res. 2005, 11, 4437-4443.
Van Veldhuizen, P. J.; Faulkner, J. R.; Lara Jr, P. N.; Gumerlock, P. H.; Goodwin, J. W.; Dakhil, S. R.; Gross, H. M.; Flanigan, R. C.; Crawford, E. D. A phase II study of flavopiridol in patients with advanced renal cell carcinoma: results of Southwest Oncology Group Trial 0109. Cancer Chemother. Pharmacol. 2005, 56, 39-45.
Fuse, E.; Kuwabara, T.; Sparreboom, A.; Sausville, E. A.; Figg, W. D. Review of UCN-01 development: a lesson in the importance of clinical pharmacology. J. Clin. Pharmacol. 2005, 45, 394-403.
Badros, A. Z.; Goloubeva, O.; Rapoport, A. P.; Ratterree, B.; Gahres, N.; Meisenberg, B.; Takebe, N.; Heyman, M.; Zwiebel, J.; Streicher, H.; Gocke, C. D.; Tomic, D.; Flaws, J. A.; Zhang, B.; Fenton, R. G. Phase II study of G3139, a Bcl-2 antisense oligonucleotide, in combination with dexamethasone and thalidomide in relapsed multiple myeloma patients. J. Clin. Oncol. 2005, 23, 4089-4099.
Kelly, W. K.; O'Connor, O. A.; Krug, L. M.; Chiao, J. H.; Heaney, M.; Curley, T.; MacGregore-Cortelli, B.; Tong, W.; Secrist, J. P.; Schwartz, L.; Richardson, S.; Chu, E.; Olgac, S.; Marks, P. A.; Scher, H.; Richon, V. M. Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. J. Clin. Oncol. 2005, 23, 3923-3931.
Papadimitrakopoulou, V.; Agelaki, S.; Tran, H. T.; Kies, M.; Gagel, R.; Zinner, R.; Kim, E.; Ayers, G.; Wright, J.; Khuri, F. Phase I study of the farnesyltransferase inhibitor BMS-214662 given weekly in patients with solid tumors. Clin. Cancer Res. 2005, 11, 4151-4159.
Schmidli, H.; Peng, B.; Riviere, G. J.; Capdeville, R.; Hensley, M.; Gathmann, I.; Bolton, A. E.; Racine-Poon, A. Population pharmacokinetics of imatinib mesylate in patients with chronic-phase chronic myeloid leukaemia: results of a phase III study. Br. J. Clin. Pharmacol. 2005, 60, 35-44.
Pao, W.; Miller, V. A. Epidermal growth factor receptor mutations, small-molecule kinase inhibitors, and non-small-cell lung cancer: current knowledge and future directions. J. Clin. Oncol. 2005, 23, 2556-2568.
Information received from the Internet Homepages of the Nobelprize.org (http://nobelprize.org).
Golias, C. H.; Charalabopoulos, A.; Charalabopoulos, K. Cell proliferation and cell cycle control: a mini review. Int. J. Clin. Pract. 2004, 58, 1134-1141.
Fischer, P. M.; Glover, D. M.; Lane, D. P. Targeting the cell cycle. Drug Disc. Today: Ther. Strat. 2004, 1, 417-423.
Malumbres, M.; Barbacid, M. To cycle or not to cycle: a critical decision in cancer. Nature Rev. Cancer 2001, 1, 222-231.
Brooks, G.; La Thangue, N. B. The cell cycle and drug discovery: the promise and the hope. Drug Disc. Today 1999, 4, 455-464.
Gali-Muhtasib, H.; Bakkar, N. Modulating cell cycle: current applications and prospects for the future drug development. Curr. Cancer Drug Targets 2002, 2, 309-336.
Hung, D. T.; Jamison, T. F.; Schreiber S. L. Understanding and controlling the cell cycle with natural products. Chem. Biol. 1996, 3, 623-639.
Sherr, C. J. Cancer cell cycles. Science 1996, 274, 1672-1677.
Vousden, K. H.; Prives, C. P53 and prognosis: new insights and further complexity. Cell 2005, 120, 7-10.
Tokino, T.; Nakamura, Y. The role of p53-target genes in human cancer. Crit. Rev. Oncol. Hematol. 2000, 33, 1-6.
Swanton, C. Cell-cycle targeted therapies. Lancet. Oncol. 2004, 5, 27-36.
Slingerland, J.; Pagano, M. Regulation of the Cdk inhibitor p27 and its deregulation in cancer. J. Cell. Physiol. 2000, 183, 10-17.
Senderowicz, A. M. Targeting cell cycle and apoptosis for the treatment of human malignancis. Curr. Opin. Cell Biol. 2004, 16, 670-678.
Welburn, J. P.I.; Endicott, J. A. Inhibition of the cell cycle with chemical inhibitors: a targeted approach. Semin. Cell Dev. Biol. 2005, 16, 369-381.
Zhou, B.-B. S.; Bartek, J. Targeting the checkpoint kinases: chemosensitization versus chemoprotection. Nature Rev. Cancer 2004, 4, 1-10.
Kawabe, T. G2 checkpoint abrogators as anticancer drugs. Mol. Cancer Ther. 2004, 3, 513-519.
Wood, K. W.; Cornwell, W. D.; Jackson, J. R. Past and future of the mitotic spindle as an oncology target. Curr. Opin. Pharmacol. 2001, 1, 370-377.
Yan, Y.; Sardana, V.; Xu, B.; Homnick, C.; Halczenko, W.; Buser, C. A.; Schaber, M.; Hartman, G. D.; Huber, H. E.; Kuo, L. C. Inhibition of a mitotic motor protein: where, how, and conformational consequences. J. Mol. Biol. 2004, 335, 547-554.
Sakowicz, R.; Finer, J. T.; Beraud, C.; Crompton, A.; Lewis, E.; Fritsch, A.; Lee, Y.; Mak, J.; Moody, R.; Turincio, R.; Chabala, J. C.; Gonzales, P.; Roth, S.; Weitman, S.; Wood, K. W. Antitumor activity of a kinesin inhibitor. Cancer Res. 2004, 1, 3276-3280.
Bergnes, G.; Brejc, K.; Belmont, L. Mitotic kinesins: prospects for antimitotic drug discovery. Curr. Top. Med. Chem. 2005, 5, 127-145.
Barr, F. A.; Silljé, H. H. W.; Nigg, E. A. Polo-like kinases and the orchestration of cell division. Nat. Rev. Mol. Cell. Biol. 2004, 5, 429-440.
Zhou, Q.; Bai, M.; Su, Y. Effect of antisense RNA targeting polo-like kinase 1 on cell cycle and proliferation in A549 cells. Chin. Med. J. 2004, 117, 1642-1649.
Takagi, M.; Honmura, T.; Watanabe, S.; Yamaguchi, R.; Nogawa, M.; Nishimura, I.; Katoh, F.; Matsuda, M.; Hidaka, H. In vivo antitumor activity of a novel sulfonamide, HMN-214, against human tumor xenografts in mice and the spectrum of cytotoxicity of its active metabolite, HMN-176. Invest. New Drugs 2003, 21, 387-399.
Sausville, E. A. Aurora kinases dawn as cancer drug targets. Nat. Med. 2004, 10, 262-267.
Andrews, P. D.; Knatko, E.; Moore, W. J.; Swedlow, J. R. Mitotic mechanics: the auroras come into view. Curr. Opin. Cell. Biol. 2003, 15, 672-683.
Harrington, E. A.; Bebbington, D.; Moore, J.; Rasmussen, R. K.; Ajose-Adeogun, A. O.; Nakayama, T.; Graham, J. A.; Demur, C.; Hercend, T.; Diu-Hercend, A.; Su, M.; Golec, J. M.; Miller, K. M. VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat. Med. 2004, 10, 262-267.
Dittrich, C.; Dumez, H.; Calvert, H.; Hanauske, A.; Faber, M.; Wanders, J.; Yule, M.; Ravic, M.; Fumoleau, P. Phase I and pharmacokinetic study of E7070, a chloroindolyl-sulfonamide anticancer agent, administered on a weekly schedule to patients with solid tumors. Clin. Cancer Res. 2003, 9, 5195-5204.
Dupont, J.; Bienvenu, B.; Aghajanian, C.; Pezzulli, S.; Sabbatini, P.; Vongphrachanh, P.; Chang, C.; Perkell, C.; Ng, K.; Passe, S.; Breimer, L.; Zhi, J.; DeMario, M.; Spriggs, D.; Soignet, S. L. Phase I and pharmacokinetic study of the novel oral cell-cycle inhibitor Ro 31-7453 in patients with advanced solid tumors. J. Clin. Oncol. 2004, 22, 3366-3374.
Drews, J. Drug discovery: a historical perspective. Science 2000, 287, 1960-1964.
Scozzafava, A.; Owa, T.; Mastrolorenzo, A.; Supuran, C. T. Anticancer and antiviral sulfonamides. Curr. Med. Chem. 2003, 10, 925-953.
Yoshino, H.; Ueda, N.; Niijima J.; Sugumi, H.; Kotake, Y,; Koyanagi, N.; Yoshimatsu, K.; Asada, M.; Watanabe, T.; Nagasu, T.; Tsukahara, K.; Iijima, A.; Kitoh, K. Novel sulfonamides as potential, systemically active antitumor agents. J. Med. Chem. 1992, 35, 2496-2497.
Gwaltney, S. L.; Imade H. M.; Li, Q.; Gehrke, L.; Credo, R. B.; Warner, R. B.; Lee, J. Y.; Kovar, P.; Frost, D.; Ng, S.-C. Sham, H. L. Novel sulfonate derivatives: potent antimitotic agents. Bioorg. Med. Chem. Lett. 2001, 11, 1671-1673.
Yokoi, A.; Kuromitsu, J.; Kawai, T.; Nagasu, T.; Sugi, N. H.; Yoshimatsu, K.; Yoshino, H.; Owa, T. Profiling novel sulfonamide antitumor agents with cell-based phenotypic screens and array-based gene expression analysis. Mol. Cancer Ther. 2002, 1, 275-286.
Owa, T.; Yoshino, H.; Okauchi, T.; Yoshimatsu, K.; Ozawa, Y.; Sugi, N. H.; Nagasu, T.; Koyanagi, N.; Kitoh, K. Discovery of novel antitumor sulfonamides targeting G1 phase of the cell cycle. J. Med. Chem. 1999, 42, 3789-3799.
Yamamoto, K.; Noda, K.; Yoshimura, A.; Fukuoka, M.; Furuse, K.; Niitani, H. Phase I study of E7010. Cancer Chemother. Pharmacol. 1998, 42, 127-134.
Ozawa, Y.; Sugi1, N. H.; Nagasu, T.; Owa, T.; Watanabe, T.; Koyanagi, N.; Yoshino, H.; Kitoh, K.; Yoshimatsu, K. E7070, a novel sulphonamide agent with potent antitumour activity in vitro and in vivo. Eur. J. Cancer 2001, 37, 2275-2282.
Kesteren, C. V.; Beijnen1, J. H.; Schellens, J. H. M. E7070: a novel synthetic sulfonamide targeting the cell cycle progression for the treatment of cancer. Anticancer Drugs 2002, 13, 989-997.
Casini, A.; Scozzafava, A.; Mastrolorenzo, A.; Supuran, C. T. Sulfonamides and sulfonylated derivatives as anticancer agents. Curr. Cancer Drug Targets 2002, 2, 55-75.
Chen, K.-Y. (陳冠妤). Design and synthesis of benzenesulfonamide derivatives as potential cell cycle targeting inhibitors. MS thesis, National Taiwan University, Taipei, Taiwan, R.O.C., 2001.
Cheng, C. C. Structural aspects of antineoplastic agents –a new approach. Prog. Med. Chem. 1988, 25, 35-83.
Wall, M. E.; Wanai, M. C.; Cook, C. E.; Palmer, K. H.; Mcphail, A. T.; Sim, G. A. Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitors from Camptotheca acuminate. J. Am. Chem. Soc. 1966, 88, 3888-3890.
Woodward, R. B.; Iacobucci, G. A.; Hochstein, F. A. The synthesis of ellipticine. J. Am. Chem. Soc. 1959, 81, 4434-4435.
Atwell, G. J.; Bos, C. D.; Baguley, B. C.; Denny, W. A. Potential antitumor agents. 56. “Minimal” DNA-intercalating ligands as antitumor drugs: phenylquinoline-8-carboxamides. J. Med. Chem. 1988, 31, 1048-1052.
Mikata, Y.; Yokoyama, M.; Ogura, S.-I.; Okura, I.; Kawasaki, M.; Maeda, M.; Yano, S. Effect of side chain location in (2-aminoethyl)-aminomethyl-2-phenylquinolines as antitumor agents. Bioorg. Med. Chem. Lett. 1998, 8, 1243-1248.
Glichrist, T. L. Heterocyclic Chemistry, 2nd ed; Longman Scientific and Technical: England, 1992; pp 153-156.
Stanforth, S. P. Catalytic cross-coupling reactions in biaryl synthesis. Tetrahedron 1998, 54, 263-303.
Miyaura N.; Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds Chem. Rev. 1995, 95, 2457-2483.
Case, F. H.; Sasin, R. Substituted 1,10-phenanthrolines. VIII. 2- and 3-phenyl derivatives. J. Org. Chem. 1955, 20, 1330-1336.
Stauffer, S. R.; Huang, Y.; Coletta, C. J.; Tedesco, R.; Katzenellenbogen, J. A. Estrogen pyrazoles: defining the pyrazole core structure and the orientation of substituents in the ligand binding pocket of the estrogen receptor. Bioorg. Med. Chem. 2001, 9, 141-150.
Elderfield, R. C.; Gensler, W. J.; Bembry, T. H.; Williamson, T. A.; Weisl, H. Synthesis of simple 2-phenyl-8-aminoquinoline derivatives. J. Am. Chem. Soc. 1946, 68, 1589-1591.
Hauser, C. R.; Bloom, M. S.; Breslow, D. S.; Adams, J. T.; Amore, S. T.; Weiss, M. J. Synthesis of antimalarials. VII. Synthesis of certain 8-aminoquinolines. J. Am. Chem. Soc. 1946, 68, 1544-1546.
Gershon, H.; Clarke, D. D. Improved syntheses of some monochloro- and monobromo-8-quinolinols. Monatsh. Chem. 1991, 122, 935-941.
Qian, Y.; Marugan, J. J.; Fossum, R. D.; Vogt, A.; Sebti, S. M.; Hamilton, A. D. Probing the hydrophobic pocket of farnesyltransferase: aromatic substitution of CAAX peptidomimetics leads to highly potent inhibitors. Bioorg. Med. Chem. 1999, 7, 3011-3024.
Karig, G.; Spencer, J. A.; Gallagher, T. Directed deprotonation-transmetalation as a route to substituted pyridines. Org. Lett. 2001, 3, 835-838.
Fenger, I.; Drian, C. L. Reusable polymer-supported palladium catalysts: an alternative to tetrakis(triphenylphosphine)palladium in the Suzuki cross-coupling reaction. Tetrahedron Lett. 1998, 39, 4287-4290.
Li, W.; Nelson, D. P.; Jensen, M. S.; Hoerrner, R. S.; Cai, D.; Larsen, R. D. Synthesis of 3-pyridylboronic acid and its pinacol ester. Application of 3-pyridylboronic acid in Suzuki coupling to prepare 3-pyridin-3-ylquinoline. In The Organic Syntheses, Vol. 81; Danheiser, R. L. ed.; John Wiley & Sons, Inc.: New York, 2004; pp 89-97.
Dai, W. M.; Li, Y.; Zhang, Y.; Lai, K. W.; Wu, J. A novel class of amide-derived air-stable P,O-ligands for Suzuki cross-coupling at low catalyst loading. Tetrahedron Lett. 2004, 45, 1999-2001.
Roy, B. C.; Kar, G. K.; Ray, J. K. A simple and new synthetic method for the preparation of 2-phenyl-6-substituted quinolines. Synth. Commun. 1993, 23, 1959-1965.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24357-
dc.description.abstract本論文主旨為設計與合成喹啉(quinoline)衍生物作為潛能癌細胞毒殺劑,主要內容為合成3-phenylquinolines(7-10)與2-phenylquinolines(11-14、17與18)兩系列目標化合物,並評估其癌細胞毒殺活性。3-Phenylquinolines 7-10的製備,先由8-nitroquinoline與N-bromosuccinimide(NBS)在第3位進行溴化反應後,經Suzuki耦合反應可得到中間物8-nitro-3-phenylquinoline(1a)與3-(4-methoxyphenyl)- 8-nitroquinoline(1b)。將中間物1a,b使用鐵粉還原後,再與不同取代的benzenesulfonyl chloride、benzoyl chloride或phenyl isocyanate進行反應可得到目標化合物7-10。為了製備第8位取代之2-phenylquinoline 11-14,首先由o-nitroaniline與不同取代的桂皮醛於酸性條件下進行Doebner-Miller環化反應得到中間物8-nitro-2-phenylquinoline(2a)與2-(4-methoxyphenyl)-8-nitroquinoline(2b)。此外,第6位取代2-phenylquinoline 17與18的製備,先取不同取代的acetophenones與Vilsmeier-Haack試劑(POCl3/DMF)反應,接著與兩當量p-nitroaniline作用,最後在220-250 ℃下進行環化反應得到中間物6-nitro-2-phenylquinoline(3a)與2-(4-methoxyphenyl)-6-nitroquinoline(3b)。利用1a,b之相同序列反應,取中間物2a,b與3a,b製備目標化合物11-14、17與18。所有目標化合物經使用MTT分析法對胃癌細胞株(AGS)、肺癌細胞株(A549)、肝癌細胞株(HepG2)、大腸直腸癌細胞株(HT-29)與前列腺癌細胞株(PC-3)進行體外(in vitro)癌細胞毒性測試,結果顯示化合物7a-c、8a,b、10a,b、11b,c、12b、13a,b及14a,b對某些癌細胞株呈現有意義的抑制活性,其GI50(PC-3為IC50)在low micromolar與submicromolar濃度層級之間。其中活性呈現較強的化合物,在肝癌細胞中,7a、7c、8a與8b之GI50分別為0.12、0.18、0.11及0.20 μM;在胃癌細胞中,7a與8a之GI50分別為0.73及1.03 μM;在大腸直腸癌細胞中,11b之GI50為0.55 μM。進一步經流式細胞儀分析,發現7a與8a會使胃癌與肝癌細胞停滯在S與G2/M期;7c與8b會使肝癌細胞停滯在S與G2/M期,並誘導癌細胞走向細胞凋亡;11b會使得大腸直腸癌細胞停滯在G2/M期,且誘導癌細胞走向細胞凋亡。依據生物活性分析結果顯示此類具第8位苯磺醯胺基取代之3-苯基與2-苯基喹啉衍生物可作為發展新型抗癌藥物之先導化合物。zh_TW
dc.description.abstractThe aim of this thesis is to design and synthesize quinoline derivatives as potential cytotoxic agents. Two series of target compounds, 3-phenylquinolines (7-10) and 2-phenylquinolines (11-14, 17 and 18), were prepared and evaluated for their cytotoxicity. In the preparation of 3-phenylquinolines 7-10, the required intermediates 8-nitro-3-phenylquinoline (1a) and 3-(4-methoxyphenyl)-8-nitroquinoline (1b) were obtained from 8-nitroquinoline by bromination with N-bromosuccinimide (NBS) followed by Suzuki coupling reaction. Reduction of the nitro compounds 1a,b with iron powder and subsequent reaction with appropriate benzenesulfonyl chloride, benzoyl chloride or phenyl isocyanate provided target compounds 7-10. To prepare target 8-substituted 2-phenylquinolines 11-14, o-nitroaniline was reacted with appropriate cinnamaldehyde under acidic conditions via Doebner-Miller cyclization to give the intermediates 8-nitro-2-phenylquinoline (2a) and 2-(4-methoxyphenyl)-8-nitroquinoline (2b). The intermediates 6-nitro-2-phenylquinoline (3a) and 2-(4-methoxyphenyl)-6-nitroquinoline (3b) for the synthesis of target 6-substituted 2-phenylquinolines 17 and 18 were prepared from appropriate acetophenone by treatment with Vilsmeier-Haack reagent (POCl3/DMF), followed by reaction with 2 equivalents of p-nitroaniline and subsequent cyclization at 220-250 ℃. The intermediates 2a,b and 3a,b were subjected to the same sequence of reactions as performed on 1a,b to provide target compounds 11-14, 17 and 18. All target compounds were evaluated for in vitro antiproliferative activity against five human tumor cell lines (AGS, A549, HepG2, HT-29 and PC-3) by MTT assay. Among the tested compounds, 7a-c, 8a,b, 10a,b, 11b,c, 12b, 13a,b and 14a,b demonstrated significant cytotoxicity against certain cell lines with GI50 (IC50 for PC-3) values in the low micromolar to submicromolar concentration range. The present investigation has led to the discovery of some promising cytotoxic compounds with good potency as follows: 7a, 7c, 8a and 8b (for HepG2 cell line, GI50 = 0.12, 0.18, 0.11 and 0.20 μM, respectively); 7a and 8a (for AGS cell line, GI50 = 0.73 and 1.03 μM, respectively); 11b (for HT-29 cell line, GI50 = 0.55 μM). Furthermore, as revealed from the results obtained in flow cytometry analyses, compounds 7a and 8a caused S and G2/M arrests in AGS and HepG2 cells; compounds 7c and 8b caused S and G2/M arrests and induced apoptosis in HepG2 cells; and compound 11b caused G2/M arrest and induced apoptosis in HT-29 cells. These results suggest that the designed 8-benzenesulfonamido substituted 3-phenylquinolines and 2-phenylquinolines may serve as useful lead compounds for the development of new antitumor agents.en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:23:05Z (GMT). No. of bitstreams: 1
ntu-94-R92423004-1.pdf: 1086913 bytes, checksum: aec3c14d9e4d1f3b4c8f0a962affa75c (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents壹、緒論 1
貳、實驗目的與設計 14
叁、結果與討論 17
3.1 目標化合物之合成策略 17
3.2 目標化合物之合成 19
3.2.1 8-Substituted 3-phenylquinolines 7-10之合成 19
3.2.2 8-Substituted 2-phenylquinolines 11-14之合成 25
3.2.3 6-Substituted 2-phenylquinolines 17與18之合成 27
3.3 生物活性測試 29
3.3.1 硝基化合物1-3之體外活性測試 29
3.3.2 8-Substituted 3-phenylquinolines之體外活性測試 30
3.3.3 8-Substituted 2-phenylquinolines之體外活性測試 32
3.3.4 6-Substituted 2-phenylquinolines之體外活性測試 33
3.4 作用機制探討 34
肆、結論 39
伍、實驗部分 40
5.1 實驗儀器與檢驗方法 40
5.2 試藥、溶劑 40
5.3 合成步驟 41
5.4 生物活性評估 59
陸、參考文獻 63
dc.language.isozh-TW
dc.subject苯磺醯胺zh_TW
dc.subject苯基&#21945zh_TW
dc.subject衍生物zh_TW
dc.subject癌細胞毒殺劑zh_TW
dc.subjectphenylquinolineen
dc.subjectcytotoxic agenten
dc.subjectbenzenesulfonamideen
dc.title喹啉衍生物作為癌細胞毒殺劑之設計與合成zh_TW
dc.titleDesign and Synthesis of Quinoline Derivatives as Potential Cytotoxic Agentsen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王光昭,顧記華,孔繁璐,陳香惠
dc.subject.keyword苯基&#21945,&#21833,衍生物,癌細胞毒殺劑,苯磺醯胺,zh_TW
dc.subject.keywordphenylquinoline,cytotoxic agent,benzenesulfonamide,en
dc.relation.page69
dc.rights.note未授權
dc.date.accepted2005-07-26
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
Appears in Collections:藥學系

Files in This Item:
File SizeFormat 
ntu-94-1.pdf
  Restricted Access
1.06 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved