Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2298
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林俊達(Guin-Dar Lin)
dc.contributor.authorYu-Ching Shenen
dc.contributor.author沈于晴zh_TW
dc.date.accessioned2021-05-13T06:39:02Z-
dc.date.available2018-03-02
dc.date.available2021-05-13T06:39:02Z-
dc.date.copyright2018-03-02
dc.date.issued2017
dc.date.submitted2018-02-12
dc.identifier.citation[1] P. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in Proceedings 35th Annual Symposium on Foundations of Computer Science (IEEE Comput. Soc. Press, 1994) pp. 124–134.
[2] J. Proos and C. Zalka, Shor’s discrete logarithm quantum algorithm for elliptic curves, Quantum Info. Comput. 3, 317–344 (2003), arXiv:quant-ph/0301141.
[3] T. Kleinjung, J. W. Bos, A. K. Lenstra, D. A. Osvik, K. Aoki, S. Contini, J. Franke, E. Thomé, P. Jermini, M. Thiémard, P. Leyland, P. L. Montgomery, A. Timofeev, and H. Stockinger, A heterogeneous computing environment to solve the 768-bit RSA challenge, Cluster Computing 15, 53–68 (2012).
[4] E. Gerjuoy, Shor’s factoring algorithm and modern cryptography. An illustration of the capabilities inherent in quantum computers, American Journal of Physics 73, 521–540 (2005), arXiv:quant-ph/0411184.
[5] D. P. DiVincenzo, The Physical Implementation of Quantum Computation, Fortschritte der Physik 48, 771–783 (2000), arXiv:quant-ph/0002077.
[6] W. Paul, Electromagnetic traps for charged and neutral particles, Rev. Mod. Phys. 62, 531–540 (1990).
[7] S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe, Manipulation and detection of a trapped Yb+ hyperfine qubit, Phys. Rev. A 76, 1–9 (2007), arXiv:0708.0657.
[8] J. I. Cirac and P. Zoller, Quantum computations with cold trapped ions, Phys. Rev. Lett. 74, 4091–4094 (1995), arXiv:quant-ph/0305129.
[9] A. Sørensen and K. Mølmer, Quantum Computation with Ions in Thermal Motion, Phys. Rev. Lett. 82, 1971–1974 (1999), arXiv:quant-ph/9810039.
[10] A. Sørensen and K. Mølmer, Entanglement and quantum computation with ions in thermal motion, Phys. Rev. A 62, 1–11 (2000), arXiv:quant-ph/0002024.
[11] S. Debnath, N. M. Linke, C. Figgatt, K. A. Landsman, K. Wright, and C. Monroe, Demonstration of a small programmable quantum computer with atomic qubits, Nature 536, 63–66 (2016), arXiv:1603.04512.
[12] T. Monz, D. Nigg, E. A. Martinez, M. F. Brandl, P. Schindler, R. Rines, S. X. Wang, I. L. Chuang, and R. Blatt, Realization of a scalable Shor algorithm, Science 351, 1068–1070 (2016), arXiv:1507.08852.
[13] D. Kielpinski, C. Monroe, and D. J. Wineland, Architecture for a scalable ion-trap quantum computer, Nature 417, 709–711 (2002).
[14] L.-M. Duan and C. Monroe, Colloquium: Quantum networks with trapped ions, Rev. Mod. Phys. 82, 1209–1224 (2010), arXiv:1506.00985.
[15] C. Schneider, M. Enderlein, T. Huber, and T. Schaetz, Optical trapping of an ion, Nature Photonics 4, 772–775 (2010), arXiv:1001.2953.
[16] D. Kielpinski, B. King, C. Myatt, C. Sackett, Q. Turchette, W. Itano, C. Monroe,D. J. Wineland, and W. Zurek, Sympathetic cooling of trapped ions for quantum logic, Phys. Rev. A 61, 032310 (2000).
[17] G.-D. Lin and L.-M. Duan, Sympathetic cooling in a large ion crystal, Quantum Information Processing 15, 5299–5313 (2016), arXiv:1511.02463.
[18] M. G. Raizen, J. M. Gilligan, J. C. Bergquist, W. M. Itano, and D. J. Wineland, Ionic crystals in a linear Paul trap, Phys. Rev. A 45, 6493–6501 (1992).
[19] S. Seidelin, J. Chiaverini, R. Reichle, J. J. Bollinger, D. Leibfried, J. Britton, J. H. Wesenberg, R. B. Blakestad, R. J. Epstein, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, N. Shiga, and D. J. Wineland, Microfabricated surface-electrode ion trap for scalable quantum information processing, Phys. Rev. Lett. 96, 1–4 (2006), arXiv:quant-ph/0601173.
[20] A. Barenco, C. H. Bennett, R. Cleve, D. P. Divincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, Elementary gates for quantum computation, Phys. Rev. A 52, 3457–3467 (1995), arXiv:quant-ph/9503016.
[21] H. Häffner, C. F. Roos, and R. Blatt, Quantum computing with trapped ions, Physics Reports 469, 155–203 (2008), arXiv:0809.4368 .
[22] F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Guide, G. P. T. Lancaster, T. Deuschle, C. Becher, C. Roos, J. Eschner, and R. Blatt, Realisation of the Cirac-Zoller controlled-NOT quantum gate, Nature 422, 408–411 (2003).
[23] C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland, and C. Monroe, Experimental entanglement of four particles, Nature 404, 256–259 (2000), arXiv:quant-ph/0312197 .
[24] T. Monz, P. Schindler, J. T. Barreiro, M. Chwalla, D. Nigg, W. A. Coish, M. Harlander, W. Hänsel, M. Hennrich, and R. Blatt, 14-qubit entanglement: Creation and coherence, Phys. Rev. Lett. 106, 1–4 (2011), arXiv:1009.6126.
[25] G. J. Milburn, S. Schneider, and D. F. V. James, Ion Trap Quantum Computing with Warm Ions, Fortschritte der Physik 48, 801–810 (2000).
[26] P. J. Lee, K.-A. Brickman, L. Deslauriers, P. C. Haljan, L.-M. Duan, and C. Monroe, Phase Control of Trapped Ion Quantum Gates, J. Opt. B. 371, 21 (2005), arXiv:quant-ph/0505203.
[27] D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenković, C. Langer, T. Rosenband, and D. J. Wineland, Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate, Nature 422, 412–415 (2003).
[28] S.-L. Zhu, C. Monroe, and L.-M. Duan, Trapped ion quantum computation with transverse phonon modes, Phys. Rev. Lett. 97, 050505 (2006), arXiv:quantph/0601159.
[29] C. Monroe, D. M. Meekhof, B. E. King, S. R. Jefferts, W. M. Itano, D. J. Wineland, and P. Gould, Resolved-sideband Raman cooling of a bound atom to the 3D zero-point energy, Physical Review Letters 75, 4011–4014 (1995).
[30] G.-D. Lin, S.-L. Zhu, R. Islam, K. Kim, M.-S. Chang, S. Korenblit, C. Monroe, and L.-M. Duan, Large-scale quantum computation in an anharmonic linear ion trap, Europhys. Lett. 86, 60004 (2009), arXiv:0901.0579.
[31] A. M. Steane, The ion trap quantum information processor, Appl. Phys. B 64, 623–642 (1997), arXiv:quant-ph/9608011.
[32] D. H. E. Dubin, Theory of structural phase transitions in a trapped Coulomb crystal, Phys. Rev. Lett. 71, 2753–2756 (1993).
[33] H. Totsuji and J.-L. Barrat, Structure of a nonneutral classical plasma in a magnetic field, Phys. Rev. Lett. 60, 2484–2487 (1988).
[34] Q. A. Turchette, D. Kielpinski, B. E. King, D. Leibfried, D. M. Meekhof, C. J. Myatt, M. A. Rowe, C. A. Sackett, C. S. Wood, W. M. Itano, C. Monroe, and D. J. Wineland, Heating of trapped ions from the quantum ground state, Phys. Rev. A 61, 063418 (2000), arXiv:quant-ph/0002040.
[35] C. Gardiner and P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics (Springer, 2004).
[36] S.-L. Zhu, C. Monroe, and L.-M. Duan, Arbitrary-speed quantum gates within large ion crystals through minimum control of laser beams, Europhys. Lett. 73, 485–491 (2006), arXiv:quant-ph/0508037.
[37] G.-D. Lin, Quantum Simulation with Ultracold Atoms and Trapped Ions, Ph.D. thesis, University of Michigan (2010).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2298-
dc.description.abstract如何擴展離子阱量子電腦一直以來是一項挑戰,其困難主要來自穩定離子陣列以及克服背景雜訊造成的加熱。在實現量子邏輯閘的操控上,由於要求雷射光能準確照射在某個特定的離子量子位元而不影響鄰近位元,離子間的距離必須大於雷射光寬度,而這個間距的數量級大約為微米等級。在常用的無線電頻率(radio-frequency, RF)離子阱架構下,當離子的數目越來越多時,軸向的束縛頻率須越來越小,以保持離子間距。故當大型離子陣列用於量子計算時,首要困難就是軸向模態的頻率趨近於零,使得該方向振動難以冷卻。因此我們提出在大型離子陣列中加入光鑷來固定離子,借此引入了新的軸向振動頻率。我們計算了當離子處於背景加熱時在協同冷卻下達到穩定態時的位置不準量。我們發現光鑷增加了軸向的穩定度。此外,光鑷阻擋了徑向模態的熱傳導。這個特性保護了在不同區域的量子邏輯閘不受彼此的影響,由此可以實行平行運算。等效來說,我們可以將兩個光鑷間的離子視為一段「局部離子阱」。我們計算了局部離子阱的冷卻效率以及探討其弛豫動力學。zh_TW
dc.description.abstractScalability of quantum computing based on trapped ions in a linear radio-frequency trap has been a challenge due to instability of crystallization and heating. To construct a large-scale ion array with single qubit addressability, the ions’ spacing must be kept a few times larger than or at least comparable to the beam size, which is of the order of microns. This implies that the longitudinal confinement vanishes as the number of ions gets very large. Meanwhile, the collective motional modes of very low frequencies are easily thermally populated and hard to be cooled. We thus propose a scalable scheme combining the applications of optical tweezers and sympathetic cooling. We demonstrate that for a large-scale ion chain, the application of optical tweezers raises the lowest longitudinal frequency by effectively pinning the ions in space. We calculate the steady-state profile of ions’ position fluctuations given that the system exposes to heat and is also sympathetically cooled at the same time. We find that the optical tweezers can enhance the stability of the longitudinal arrangement. Also, it blocks heat propagation of the transverse motion, suggesting that the qubit gate operation based on transverse modes can be done in parallel and thus protected by optical tweezers. This allows us to deal with only a portion defined by two edge ions that are illuminated by tweezer beams. This segment of the ion array is confined by a “local trap” provided by two effectively pinned ions. We demonstrate the relevant cooling efficiency and discuss the relaxation dynamics.en
dc.description.provenanceMade available in DSpace on 2021-05-13T06:39:02Z (GMT). No. of bitstreams: 1
ntu-106-R03222059-1.pdf: 1966930 bytes, checksum: 1d7be578ab1282ef7bcfbd0e9a70fcb0 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審定書ii
誌謝iii
摘要iv
Abstract v
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Paul trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Universal quantum gate . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.1 Cirac-Zoller gate . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 Mølmer-Sørensen gate . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.3 Geometrical phase gate . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Transverse-mode scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Cooling in trapped ions . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2 Collective motion of trapped ions with optical tweezers 15
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Normal modes of the harmonic trap . . . . . . . . . . . . . . . . . . . . 16
2.3 Normal modes when applying optical tweezers . . . . . . . . . . . . . . 17
3 Sympathetic cooling for large-scale computing 23
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Steady state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.1 Thermal equilibrium . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 Sympathetic cooling . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Steady state profile with optical tweezers . . . . . . . . . . . . . . . . . 30
3.4.1 Longitudinal modes for periodic arrangement of tweezers . . . . 30
3.4.2 Transverse mode for periodic arrangement of tweezers . . . . . . 34
3.5 Local trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6 Relaxation dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.7 Gate design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.8 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4 Conclusion 44
A Gate design 47
Bibliography 51
dc.language.isoen
dc.title以光鑷與協同冷卻實現可擴展的離子阱量子電腦zh_TW
dc.titleScalable Quantum Computing with an Ion Crystal Stabilized by Tweezers and Sympathetic Coolingen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree碩士
dc.contributor.oralexamcommittee張銘顯(Ming-Shien Chang),管希聖(Hsi-Sheng Goan)
dc.subject.keyword離子阱,可擴展量子計算,光鑷,協同冷卻,zh_TW
dc.subject.keywordion trap,scalable quantum computation,optical tweezers,sympathetic cooling,en
dc.relation.page55
dc.identifier.doi10.6342/NTU201800509
dc.rights.note同意授權(全球公開)
dc.date.accepted2018-02-12
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf1.92 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved