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摘要

如何擴展離子阱量子電腦一直以來是一項挑戰，其困難主要來自

穩定離子陣列以及克服背景雜訊造成的加熱。在實現量子邏輯閘的操

控上，由於要求雷射光能準確照射在某個特定的離子量子位元而不影

響鄰近位元，離子間的距離必須大於雷射光寬度，而這個間距的數量

級大約為微米等級。在常用的無線電頻率（radio-frequency, RF）離子

阱架構下，當離子的數目越來越多時，軸向的束縛頻率須越來越小，

以保持離子間距。故當大型離子陣列用於量子計算時，首要困難就是

軸向模態的頻率趨近於零，使得該方向振動難以冷卻。因此我們提出

在大型離子陣列中加入光鑷來固定離子，借此引入了新的軸向振動頻

率。我們計算了當離子處於背景加熱時在協同冷卻下達到穩定態時的

位置不準量。我們發現光鑷增加了軸向的穩定度。此外，光鑷阻擋了

徑向模態的熱傳導。這個特性保護了在不同區域的量子邏輯閘不受彼

此的影響，由此可以實行平行運算。等效來說，我們可以將兩個光鑷

間的離子視為一段「局部離子阱」。我們計算了局部離子阱的冷卻效率

以及探討其弛豫動力學。

關鍵字： 離子阱、可擴展量子計算、光鑷、協同冷卻
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Abstract

Scalability of quantum computing based on trapped ions in a linear radio-

frequency trap has been a challenge due to instability of crystallization and

heating. To construct a large-scale ion array with single qubit addressability,

the ions’ spacing must be kept a few times larger than or at least compa-

rable to the beam size, which is of the order of microns. This implies that

the longitudinal confinement vanishes as the number of ions gets very large.

Meanwhile, the collective motional modes of very low frequencies are ea-

sily thermally populated and hard to be cooled. We thus propose a scalable

scheme combining the applications of optical tweezers and sympathetic cool-

ing. We demonstrate that for a large-scale ion chain, the application of optical

tweezers raises the lowest longitudinal frequency by effectively pinning the

ions in space. We calculate the steady-state profile of ions’ position fluctuati-

ons given that the system exposes to heat and is also sympathetically cooled

at the same time. We find that the optical tweezers can enhance the stabi-

lity of the longitudinal arrangement. Also, it blocks heat propagation of the

transverse motion, suggesting that the qubit gate operation based on trans-

verse modes can be done in parallel and thus protected by optical tweezers.

This allows us to deal with only a portion defined by two edge ions that are

illuminated by tweezer beams. This segment of the ion array is confined by

a “local trap” provided by two effectively pinned ions. We demonstrate the

relevant cooling efficiency and discuss the relaxation dynamics.

Keywords: ion trap, scalable quantum computation, optical tweezers, sym-
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Chapter 1

Introduction

1.1 Motivation

Quantum computation can efficiently solve some problems which are considered difficult

to be solved by means of a classical one. For instance, the integer factorization problem,

the discrete logarithm problem, and the ellipse curve discrete logarithm problem can be

speed up exponentially by Shor’s algorithm [1, 2]. Taking the integer factorization pro-

blem for example, the largest integer that has been factorized up to now is 232 decimal

digit long (∼768 digits in binary) [3]. It takes about 2 years with hundreds of parallel

machines to factorize such a number. It can be estimated that, with Shor’s algorithm, the

computation time can be reduced to shorter than a week [4]. For practical uses, in 2000 D.

P. Divincenzo proposed a checklist of requirements that a promising quantum computer

fulfills, known as Divincenzo’s criteria [5]:

1. It is a scalable physical system with well characterized qubits.

2. It has the ability to initialize the state of the qubits to a simple fiducial state.

3. The qubit has long relevant coherence time, which is much longer than the gate

operating time.

4. It has a universal set of quantum gate.

5. It has a qubit-specific measurement capability.

1
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Ion traps are regarded as one of the leading candidates of a quantum computer considering

these conditions. Ions are confined in space by time-varying electric field, called a radio-

frequency (RF) trap, or a Paul trap [6]. Each ion serves as a quantum bit (qubit) as the

quantum information is encoded in two of the atomic hyperfine states. Due to strong

Coulomb repulsion, the ions are well separated thus allowing us to address individual

ones. The initial state can be prepared by the optical pumping technique. The coherence

time of the metastable state is about 0.1 seconds [7], while the gate operation time is about

a few hundredmicroseconds. To implement a quantum logic gate, we shine laser beams on

ions to manipulate transitions of internal states. There are several schemes for elementary

logic gates, which can further constitute more complicated operations and functions. In

addition to the original prototype, known as Cirac-Zoller gate, proposed by J. I. Cirac

and P. Zoller in 1995 [8], the most commonly used scheme nowadays is the Mølmer-

Sørenson gate, proposed by K. Mølmer and A. Sørenson [9, 10] in 1999. Both schemes

will be briefly summarized in the succeeding discussions. The Mølmer-Sørenson gate

can reach very high gate fidelity even when the ions are in thermal motion. To read out,

one of the qubit states can be pumped to a short-lived auxiliary state, which will soon

emit fluorescence, while the other state is left unchanged. Thus, the quantum state can be

measured by detecting the photon statistics of the fluorescence [7]. The ion trap system

has many advantages. For example, due to the strong and long range Coulomb interaction,

the quantum gate can be made arbitrarily fast and involving distant ions. Further, since

the quantum circuit is determined by the external laser, we can reconfigure the quantum

circuit without altering the structure of the ion array. These featuresmake an ion-trap based

quantum computer even suitable for fabrication and easily re-programmable [11]. There

are some quantum algorithms that have been already demonstrated in ion trap systems

[11, 12].

However, like other physical platforms of implementation, scalability is the most se-

rious challenge. The difficulty of stabilizing the ion array structure and cooling grows up

as the number of ions increases. The main proposals of scaling up an ion trap include ion

shuttling [13] and quantum networks [14]. These proposals raise other questions such as

2
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precise control and adiabatic movement of ions, quantum interfacing between ion traps

and other platforms that may involve flying qubits like photons. Here, we aim to explore

and break the limitation with a simple linear Paul-trap configuration set by current difficul-

ties, mostly associated with serious heating issues in a large-scale ion trap. In this thesis,

we propose an all-ion based scheme for large-scale quantum computing by combing the

ideas of local optical tweezers [15] and sympathetic cooling [16, 17].

1.2 Paul trap

We use a Paul trap to confine the ions [6]. The Paul trap is named after its inventorW. Paul,

who won the Nobel Prize in Physics in 1989 for this contribution. From Earnshaw’s theo-

rem, we know that a charged particle cannot be captured stably in a static electric field. To

circumvent the difficulty, a Paul trap uses a fast-oscillating quadrupole setting of electro-

des, usually in radio-frequency, to offer an effective local trapping potential. The concept

of a Paul trap is illustrated in Figure 1.1: Intuitively, under the quadrupole saddle-shaped

potential surface shown in the left panel, a particle near the saddle point is supposed to

move toward the potential minimum along the x axis but fall off along the y axis for the

potential is a local maximum. But before the particle gets to leave the trap, the potential

surface rotates about the z axis such that the potential along the y axis becomes a local

minimum, as shown in the right panel, and pushes the particle back to the saddle point.

As a consequence, the charged particle can be effectively confined as long as the rotating

frequency of the quadrupole surface is appropriately chosen.

Figure 1.2 shows the schematic figure of a linear Paul trap, which is typically formed

by 4 parallel wires. In Figure 1.2(a), two diagonal electrode wires are applied RF voltages,

which yield an instantaneous potential ΦRF = V0 cosΩt
2

(1 + x2−y2

R2 ) (R is a geometrical

factor). Its time-averaged value is Ueff = 1
2
mω2

r(x
2 + y2), where ωr = eV0√

2mΩR2 , m is

the mass and e is the charge of a single ion [18]. The other two wires are segmented

into different DC voltages along the z direction such that a local DC potential ΦDC =

κU0

2z20
(z2 − 1

2
(x2 + y2)) (κ, z0 are geometrical factors) can be built to provide confinement

along the wires. Combining the DC and RF parts, the effective potential energy in 3-

3
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� 
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� 

Figure 1.1: The analogous figure of Paul trap. A particle is confined in a rotating saddle-
shaped potential surface.

dimension can be approximated by

U =
1

2
mω2

xx
2 +

1

2
mω2

yy
2 +

1

2
mω2

zz
2,

where ωz =
√

eκU0

mz20
, and ωx = ωy =

√
ω2
r − 1

2
ω2
z . Typically, ωx,y is much larger than

ωz to make the ions aligned along the z axis. For recent development of the ion trap,

some groups have started to construct ion traps on surfaces (Figure 1.2(b)) [19] for its

advantages on easy fabrication, good accessibility, and simple electronic circuit design.

(a)

DC

RF

(b)

y

x

z

RF DC

Figure 1.2: The schematic figure of an ion trap device. (a) The standard Paul trap formed
by four parallel wires. (b) The surface-electrode ion trap [19].
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1.3 Universal quantum gate

Any quantum circuit can be decomposed into single-qubit rotation gates and two-qubit

entangling gates, e.g. control-NOT (CNOT) gates or control-phase-flip (CPF) gates [20].

This is called the universality of the quantum gates. In this section, we will discuss how

to implement the universal gates with the trapped ions.

Suppose the information is encoded in an ion’s hyperfine state |g⟩ (ground state) and

|e⟩ (excited state). The energy separation between the two levels is h̄ωeg. Consider a

vibrational mode in a harmonic trap with an angular frequency ν, which can be described

by the Fock basis |n⟩. The energy configuration of the joint states of an ion is shown in

Figure 1.3.

ωeg 

ν 

|�, 0⟩ 

|�, 1⟩ 

|�, 2⟩ 

|�, 0⟩ 

|�, 1⟩ 

|�, 2⟩ 

Figure 1.3: The energy level of a trapped ion. The green, blue, and red arrows correspond
to the carrier, blue sideband and red sideband transitions respectively.

We now apply laser beams to drive transitions between these states. The Hamiltonian

of the laser-ion interaction in the interaction picture reads [21]

HI = h̄Ωσ+e−i(δt−ϕ) exp
(
iη(ae−iνt + a†eiνt)

)
+ H.c., (1.1)

where Ω is the Rabi frequency of the laser, δ = ω − ωeg is the laser-ion detuning, ϕ is the

phase offset of the laser. σ+ = |e⟩⟨g| and σ− = |g⟩⟨e| are raising and lowering operators

of the atomic states; a and a† are annihilation and creation operators of the phonon states;

η = k
√

h̄
2mν

is the Lamb-Dicke parameter with k the wavevector of the laser. The Lamb-

Dicke parameter characterizes the ratio between the oscillation amplitude of the ion to

5
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the wavelength of the laser. Taking the Lamb-Dicke limit η
√
n ≪ 1, which means the

displacement of the ion is much smaller than the wavelength so that it does not feel the

spatial dependence of the field, the Hamiltonian becomes

HI = h̄Ω{σ+e−i(δt−ϕ)+σ−ei(δt−ϕ)+iη(σ+e−i(δt−ϕ)−σ−ei(δt−ϕ))(ae−iνt+a†eiνt)}. (1.2)

Now we discuss the three cases of interest: δ = 0, and δ = ±ν in the following, where

we ignore the fast oscillating terms:

1. For δ = 0 (carrier transition, shown by the green arrow in Figure 1.3), the laser

couples |g, n⟩ and |e, n⟩. The Hamiltonian is

H = h̄Ω(σ+eiϕ + σ−e−iϕ). (1.3)

2. For δ = ν (blue sideband transition, shown by the blue arrow in Figure 1.3), the

laser couples |g, n⟩ and |e, n+ 1⟩. The Hamiltonian is

H = ih̄Ωη(σ+a†eiϕ − σ−ae−iϕ), (1.4)

and we get the effective Rabi frequency

Ωn,n+1 =
√
n+ 1ηΩ. (1.5)

3. For δ = −ν (red sideband transition, shown by the red arrow in Figure 1.3), the

laser couples |g, n⟩ and |e, n− 1⟩. The Hamiltonian is

H = −ih̄Ωη(σ+aeiϕ − σ−a†e−iϕ), (1.6)

and the effective Rabi frequency is

Ωn,n−1 =
√
nηΩ. (1.7)

6
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When we set δ = 0, the evolution of the states is

|en⟩ → cos
(
θ
2

)
|en⟩ − i sin

(
θ
2

)
eiϕ |gn⟩

|gn⟩ → −i sin
(
θ
2

)
e−iϕ |en⟩ + cos

(
θ
2

)
|gn⟩

, (1.8)

where θ = Ωτ , with the laser pulse duration τ . By tuning the duration time and the phase

offset of the laser pulse, the single-qubit rotation can be achieved.

For a two-qubit gate, we use vibration as the quantum bus to communicate two qubits.

At the beginning and the end of the operation, the internal states and the motional states

are desired to be disentangled. In the following subsections, we will discuss three types

of the two-qubit gates.

1.3.1 Cirac-Zoller gate

The first two-qubit gate operation of ion trap was proposed by J. I. Cirac and P. Zoller

in 1995 [8]. It requires the motional mode to be cooled to the ground state |n = 0⟩. The

scheme has three steps, as illustrated in Figure 1.4.

1. Shine a laser beamwith detuning δ = −ν on themth ion. The laser couples |e⟩m |0⟩

and |g⟩m |1⟩. The evolution of the states is given by

|e0⟩ → cos
(
θ
2

)
|e0⟩ − i sin

(
θ
2

)
eiϕ |g1⟩

|g1⟩ → −i sin
(
θ
2

)
e−iϕ |e0⟩ + cos

(
θ
2

)
|g1⟩

, (1.9)

where θ = Ω1,0τ , with the effective Rabi frequencyΩ1,0 = ηΩ (see Equation (1.7)).

Setting ϕ = 0 and θ = π (π-pulse), if the mth ion is at |g⟩m initially, the state

remains unchanged. If the mth ion is at |e⟩m initially, the population is driven to

|g⟩m |1⟩ and gains a phase −i (see Equation (1.9)).

2. Apply a 2π-pulse (θ = 2π) that couples |g⟩n |1⟩ and an auxiliary state |a⟩n |0⟩ on

the nth ion. If the nth ion is at |e⟩ initially, the state remains unchanged. If the nth

ion is at |g⟩ initially, the state gains a phase −1.

3. Apply again a π-pulse with δ = −ν and ϕ = 0 on the mth ion to take the phonon

7
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state back to |0⟩.

|�⟩� |0⟩ 

|�⟩� |0⟩ 

|�⟩� |1⟩ 

|�⟩� |1⟩ 

|�⟩� |0⟩ 

|�⟩� |0⟩ 

|�⟩� |1⟩ 

|�⟩� |1⟩ 

|�⟩� |0⟩ 

|�⟩� |0⟩ 

|�⟩� |1⟩ 

|�⟩� |1⟩ 

|�⟩� |0⟩ 

Step 1: on mth ion Step 2: on nth ion Step 3: on mth ion

Figure 1.4: The concept of the Cirac-Zoller gate.

The overall evolution of the states then becomes

|g⟩m |g⟩n |0⟩ → |g⟩m |g⟩n |0⟩ → |g⟩m |g⟩n |0⟩ → |g⟩m |g⟩n |0⟩

|g⟩m |e⟩n |0⟩ → |g⟩m |e⟩n |0⟩ → |g⟩m |e⟩n |0⟩ → |g⟩m |e⟩n |0⟩

|e⟩m |g⟩n |0⟩ → −i |g⟩m |g⟩n |1⟩ → i |g⟩m |g⟩n |1⟩ → |e⟩m |g⟩n |0⟩

|e⟩m |e⟩n |0⟩ → −i |g⟩m |e⟩n |1⟩ → −i |g⟩m |e⟩n |1⟩ → − |e⟩m |e⟩n |0⟩

.

(1.10)

Define |g⟩ = |0⟩ and |e⟩ = |1⟩, then we get the CPF gate. Because the effective Rabi

frequency Rabi frequency Ωn,n−1 is different with different phonon state |n⟩, we need to

cool the motional state to the ground one |n = 0⟩.

Cirac-Zoller gate was first realized by Schmit-Kaler et al. in 2003 [22].

1.3.2 Mølmer-Sørensen gate

K. Mølmer and A. Sørensen proposed the gate scheme that can be operated in thermal

motion [9]. In this scheme, we apply bichromatic laser beams on both ions. The laser

frequencies are ωeg ± δ, which are close to the blue and red sidebands, respectively. The

energy levels and the transition paths are shown in Figure 1.5.

In the weak-field regime ηΩ ≪ ν − δ, the phonon number n only changes by ±1.

8
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� 

� 

|���⟩ 

|���⟩ 

|��� − 1⟩ ���  

|���⟩ 

|��� + 1⟩ |��� − 1⟩ 

|���⟩ 

|��� + 1⟩ 

� 

|���⟩ |���⟩ 

|���⟩ 

|���⟩ 

|��� + 1⟩ 

|��� − 1⟩ 

|��� + 1⟩

|��� − 1⟩

Figure 1.5: The concept of the Mølmer-Sørensen gate. Bichromatic laser beams are app-
lied on the ions. The intermediate states are not populated because of the off resonance.
The overall transitions are |ggn⟩ ↔ |een⟩ (left panel) and |egn⟩ ↔ |gen⟩. These paths
interfere destructively and eliminate the dependence of phonon number n [10].

In the left panel of Figure 1.5, the path |ggn⟩ ↔ {|egn± 1⟩ , |gen± 1⟩} ↔ |een⟩ is

the cascade-type Raman transition with multi intermediate levels. Since the intermediate

states do not fulfill the resonance condition, these states are not populated in the process.

The evolution is then

|een⟩ → cos
(

Ω̃τ
2

)
|een⟩ + i sin

(
Ω̃τ
2

)
|ggn⟩

|ggn⟩ → i sin
(

Ω̃τ
2

)
|een⟩ + cos

(
Ω̃τ
2

)
|ggn⟩

, (1.11)

with the effective Rabi frequency

Ω̃ =
∑
m

ΩnmΩmn

∆m

, (1.12)

wherem denotes the intermediate states |eg ± 1⟩ and |ge± 1⟩, Ωnm (Ωmn) is the effective

Rabi frequency driving |ggn⟩ ↔ |m⟩ (|m⟩ ↔ |een⟩) (shown in Equation (1.5) and (1.7)),

and ∆m = ωm − (Em − Eggn) with ωm the laser frequency driving |ggn⟩ ↔ |m⟩ and

(Em − Eggn) the energy spacing between |m⟩ and |ggn⟩.

We get

Ω̃ =
η2Ω2

ν − δ
, (1.13)

9
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which is independent of the phonon number n. The independence of n is because the

transitions |ggn⟩ ↔ {|egn− 1⟩ , |gen− 1⟩} ↔ |een⟩ gives a factor of n, and the transi-

tion |ggn⟩ → {|gen+ 1⟩ , |egn+ 1⟩} ↔ |een⟩ gives a factor of n+ 1. These paths have

opposite detunings, eliminating the dependence of n. As a result, the Mølmer-Sørensen

gate can be operated when the phonon state is under thermal distribution. K. Mølmer and

A. Sørensen also showed that this gate scheme has high fidelity even during heating.

Similarly, The evolution in the right panel of Figure 1.5 is

|gen⟩ → cos
(

Ω̃τ
2

)
|gen⟩ − i sin

(
Ω̃τ
2

)
|egn⟩

|egn⟩ → −i sin
(

Ω̃τ
2

)
|gen⟩ + cos

(
Ω̃τ
2

)
|egn⟩

, (1.14)

with the same effective Rabi frequency Ω̃ shown in Equation (1.13).

Setting Ω̃τ = π/2, we get the maximal entanglement of the qubits. Combining with

single-qubit rotation, we can achieve CNOT gate.

The experiment of the the Mølmer-Sørensen gate was first realize by C. Sackett et

al. in 2000 [23]. In 2011, T. Monz et al. created 14-qubit entanglement by using this gate

scheme [24].

1.3.3 Geometrical phase gate

K.Mølmer and A. Sørensen also proved that their gate scheme can be achieved without the

restriction of being in the weak-field regime [10]. A similar idea was proposed indepen-

dently by G. Milburn et al. in 2000 [25]. In Milburn’s scheme, we apply spin-dependent

forces on the ions, and drive clockwise or counterclockwise trajectories in the phase space

depending on the internal states. At the end of the gate operation, the ions return to the

original motional state, obtaining a phase which equals to the area of the close loop.

To study the effect of a spin-dependent force, first we consider a forced oscillator. For

an oscillator with an angular frequency ν pushed by a force F sinωt, the Hamiltonian in

the interaction picture is [26]

H = Fx0(ae
iδt + a†e−iδt), (1.15)
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where δ = ω − ν, and x0 =
√
h̄/(2mν). The evolution operator of the forced oscillator

is [26]

U(τ) = eiϕ(τ)D(α(τ)), (1.16)

where D(α) = eαa
†−α∗a is the displacement operator with α(τ) = − i

h̄

∫ τ

0
Fx0e

iδt dt, and

ϕ(τ) = Im
{∫ τ

0
α∗ dα

}
.

The additional phase ϕ can be understood by the the relation of displacement ope-

rator D(α + β)ei Im{α∗β} = D(α)D(β). Equation (1.16) can be regraded as a series of

infinitesimal displacement.

After a period τ = 2π/δ, the displacement operator D(α) = 1 makes the motional

state back to the origin, and the state gains a phase ϕwhich equals to the area of the closed

loop.

For spin-dependent forces acting on the ions, the Hamiltonian is

H =
∑
i

Fx0(ae
iδt + a†e−iδt)σz

i , (1.17)

where σz
i = |e⟩⟨e| − |g⟩⟨g| is the Pauli matrix, and the subscript i = 1, 2 denotes the ion’s

index. Equation (1.17) shows that the ion feels a force F when the internal state is |e⟩,

and−F when the internal state is |g⟩. When both ions are at the same internal states (|ee⟩

or |gg⟩), the ions move back and force together (center-of-mass mode). When the two

ions have different internal states (|eg⟩ or |ge⟩), the ions move in the opposite directions

(breathing mode). Consider that only the breathing mode is excited by applying the laser

with frequency close to the mode frequency. If the ions’ internal state is |ee⟩ or |gg⟩, it

remains unchanged. If the ions’ internal state is |eg⟩ or |ge⟩, the motional state displaces

in the phase space.

When the ions’ motional state goes back to the origin, the evolution of the internal

11
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states is described by

|ee⟩ → |ee⟩

|gg⟩ → |gg⟩

|eg⟩ → eiϕ |eg⟩

|ge⟩ → eiϕ |ge⟩

, (1.18)

which is illustrated in Figure 1.6. By choosing appropriate laser frequency and intensity,

we can make ϕ = π/2. Then Equation (1.18) is equivalent to the CFP gate up to single-

qubit rotation. The experiment of the geometrical phase gate is realized by Leibried et

al. in 2003 [27].

x

p

|��⟩ → ��� |��⟩ 

|��⟩ → ��� |��⟩ 

Figure 1.6: The concept of the geometrical phase gate. If the ions’ internal state is |eg⟩ or
|ge⟩, the motional state displaces in the phase space. At the end of the gate operation, the
motional state goes back to the origin and gains a phase corresponding to the area of the
closed loop.

1.4 Transverse-mode scheme

S.-L. Zhu and L.-M. Duan proposed to implement gates that employs the transverse mo-

tional modes instead of the traditional way with longitudinal modes [28]. The advantage

of doing so is that the transverse confinement is usually much stronger than the longitu-

dinal one so that, under the same temperature, the number of transverse phonons can be

drastically suppressed, making the high-fidelity quantum gates rather robust against tem-

perature. Further, since the transverse trapping frequency determines the highest motional
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energy scale, other collective motion (longitudinal one, or dipole-dipole-like interaction

from neighbors) are considered slow compared to the transverse dynamics. Therefore,

every ion’s transverse motion can be viewed as individual independent oscillation. This

point of view allows us to consider only the local modes relevant to the participating ions

in a quantum gate. A systematic way of pulse shaping was thus proposed for two-qubit

gates whose speed can be made comparable to the transverse trapping frequency, which

is of the order of microsecond for the gate time.

1.5 Cooling in trapped ions

In current quantum gate experiments with trapped ions, the ions are usually pre-cooled

by Doppler laser cooling down to the order of millikelvin, the level so-called the Doppler

temperature TD = h̄γ/(2kB), with γ the natural linewidth of the atomic state. To further

go below this limit, the method of resolved sideband cooling is utilized. The idea is via the

optical pumping technique by driving the red-sideband transition: Consider an trapped ion

initially lies in its atomic ground state but a highly excited motional state characterized by

the phonon number n. A laser beam resonant with the red-sideband transitions is applied

on this ion, taking it to its atomic excited state while the phonon number is lessen by one.

Next, due to spontaneous relaxation, the ion de-excites back to its ground state with the

motional state of a smaller phonon number n− 1. By repeating such procedures, one can

cool the system nearly to its ground state [29].

However, this method might not be easily generalized to large-scale ion arrays. The

main obstacle is the increasing number of motional modes. A specific red-sideband laser

is needed for each mode, which becomes impractical when more ions are added. In Refe-

rence [28, 30], it has been shown that the transverse-mode proposal does not require the

stringent temperature requirement as the longitudinal one does. Instead, Doppler cooling

suffices in the transverse scheme due to the strong confinement and hence low phonon

numbers.

Such convenience does not guarantee sufficient cooling in the large-scale ion array

considering the gate fidelity. The cooling issue remains with the longitudinal motion,
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which still plays a role that potentially degrades the gate fidelity. The major source of er-

ror originates from the finite beam size of the control laser, for which its spatial variation

of the field profile can be seen by ions moving longitudinally. In order to build a long

array compatible with single ion addressability, the ion spacing must be kept nearly con-

stant. This cannot be done by a simple harmonic trap, where the ion spacing near the trap

center is squeezed every time an ion is added, unless the global axial trapping frequency

is lowered accordingly. However, lower longitudinal frequency means the associated mo-

tion is more difficult to be cooled and hence more sensitive to temperature. This indeed

sets a serious challenge for the large-scale ion trap quantum computation with the linear

Paul trap configuration.

In this work, we propose to use optical tweezers that effectively pin some of the ions,

introducing extra local traps to the system. To be more specific, we plan to apply optical

tweezers used like partitions so that each “compartment” can be seen as a smaller ion trap.

We will test the idea by looking mainly at the mode frequencies and the cooling efficiency.

1.6 Thesis outline

The thesis is organized as follows. In Chapter 2, wewill discuss the collective motion in an

ion trap. We further look at the effects of the collective motion when optical tweezers are

applied regularly along the ion chain. In Chapter 3, we will discuss sympathetic cooling in

the ion trap. We continuously cool some of the ions and find the temperature distribution

of the ion chain, and compare the results with and without optical tweezers. We also study

the relaxation dynamics of the ions as indication of cooling. Finally, we conclude our

work in Chapter 4.
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Chapter 2

Collective motion of trapped ions with

optical tweezers

2.1 Overview

An ion trap confinesN ions with the trapping frequency ωx, ωy, and ωz along the x, y, and

z directions, respectively. Typically, ωx = ωy, and ωx(y) ≫ ωz so that all the N ions are

aligned along the z axis. As more ions are added in the trap, the “inner” ions are pushed

closely by the “outer” ones, causing the spacing around the trap center to decrease. To

keep a certain distance between ions for individual laser addressing, we need to reduce

the trapping frequency ωz as N grows. Meanwhile, it is however more difficult to cool

lower frequency phonon modes. This can be seen from the estimated phonon number

n̄ ∼ kBT/(h̄ω). To overcome this problem, we test the idea by applying optical tweezers

on the ions [15], which are arranged regularly along the chain as shown in Figure 2.1.

By raising the tweezer frequency for local ions, the collective mode frequency will be

enhanced by a few times. This will not only help phonon removal, but also set a frequency

bound in a linear large-scale array, where the potential bottom of a traditional Paul trap is

nearly flat.
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x
z

y
optical tweezer

optical tweezer
optical tweezer

optical tweezer

Figure 2.1: Optical tweezers are applied on the ions (nodes), who are arranged periodically
on the chain.

2.2 Normal modes of the harmonic trap

ForN ions in the Paul trap, the overall potential including their Coulomb interaction reads

U =
N∑
i

1

2
mω2

xx
2
i +

1

2
mω2

yy
2
i +

1

2
mω2

zz
2
i +

N∑
i

∑
j<N

e2

4πϵ0

1

|Ri − Rj|
, (2.1)

where Ri is the position of the ith ion. The equilibrium position z0i of the ith ion can

be found by solving ∂U/∂zi = 0. For convenience, we define a length unit zs =

( e2

4πϵ0mω2
z
)1/3. Figure 2.2 shows the equilibrium positions of ions in units of zs by keeping

the trapping frequency ωz fixed for N = 1 ∼ 10.

We can see that the closest ions are at the center of the chain. The minimum spacing

d0 between ions become small as the number of ions N grows (shown in the dotted line).

A numerical result of the separation of central ions as function of N is given by d0 ≈

2zsN
−0.57 [31], and for N ≫ 1, d0 ∼ zs(ln(N)/N2)1/3) [32].

To find the normal modes, we do Taylor expansion around the equilibrium and get

U ≈ U0 +
∑

ξ,ξ′,i,j
1
2
Aξξ′

ij ∆x
ξ
i∆x

ξ′

j , where∆x
ξ
i is the displacement of the ith ion along the

ξ = x, y (transverse) and ξ = z (longitudinal) directions with respect to its equilibrium

position, andAij =
∂2U

∂xξ
i ∂x

ξ′
j

∣∣∣∣
0

(
∣∣
0
denotes ions at equilibrium positions) forms the coupling

matrix. Here U0 denotes the potential constant at the equilibrium but is not important.

Because x0i , y0i = 0, only ∂2U
∂xi∂xj

∣∣∣
0
, ∂2U

∂yi∂yj

∣∣∣
0
, and ∂2U

∂zi∂zj

∣∣∣
0
survives. This suggests that the
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motion along the x, y, and z directions is decoupled. We then have

Aξ
ij =


mω2

ξ +
∑N

j=1, j ̸=i
e2

4πϵ0

aξ

|z0i −z0j |3
, i = j

− e2

4πϵ0

aξ

|z0i −z0j |3
, i ̸= j

(2.2)

where ax(y) = −1 and az = 2 [28]. The mode frequencies ωξ,k and the mode functions bξ,ki

of the kth mode can be found by solving the eigenvalue equation
∑

j A
ξ
ijb

ξ,k
j = mω2

ξ,kb
ξ,k
i .

The mode frequencies for N = 1 to 10 are shown in Figure 2.3. Here we set ωx(y) =

10ωz, and choose ωz as the frequency unit. For the longitudinal modes (motion along

the z direction), the lowest frequency corresponds to the center-of-mass mode, for which

every ion moves back and forth all together. Therefore the mode frequency of this mode

is exactly equal to the trapping frequency ωz. On the contrary, for the transverse motion

(along the z direction) the center-of-mass mode has the highest frequency. It can be ob-

served that typically the transverse modes have higher and narrower spectral distribution

than the longitudinal ones.

Though we set ωx(y)/ωz the same value when N = 1 to 10 in Figure 2.3. The ratio

ωx(y)/ωz should be increased to keep the ions perfectly aligned when N gets very large.

The criterion of a linear array configuration is approximated by ωx(y)/ωz > 0.73N0.86

[32], and for N ≫ 1, ωx(y)/ωz > 0.77N/
√
lnN [33].

2.3 Normal modes when applying optical tweezers

Optical tweezers are dipole forces that can be formed by focused Gaussian beams incident

on an atom. Suppose a laser beam is incident on a target ion from the y direction, which is

perpendicular to the axis of the ion chain. When the field is largely detuned, it introduces

a tweezer potential

U =
2U0

w2
0

(x2 + z2)

17



doi:10.6342/NTU201800509

where U0 = − 3γP
ck3w2

0δ
with γ the natural linewidth, δ < 0 corresponding to red detuning, k,

w0, P are the wavenumber, beam size, power of the laser, respectively. Here we ignore the

y direction term because the transverse confinement of a Paul trap is typically much stron-

ger than the axial trapping provided by a Gaussian tweezer beam along the y direction. By

applying optical tweezers on some of the ions (called pinned ions), we effectively change

the local frequencies experienced by the pinned ions, i.e., ωz(x),i → ωz(x),i = ωz(x) + ωot.

Then we have a new matrix Az(x) and new eigenfrequencies ωz(x),k.

Figure 2.4 shows the mode frequencies of 13 ions given different numbers of optical

tweezer beams. We set ωx = 10ωz, and choose ωz as the frequency unit. The subfigures

(a), (c), (e), and (g) correspond to the longitudinal mode, and (b), (d), (f), and (h) the

transverse mode. The optical tweezers are arranged periodically. The period for pinned

ions are 12, 6, 4, and 3 for the subfigure (a)(b), (c)(d), (e)(f), and (g)(h), respectively. In

other words, the indices of pinned ions in the subfigure (a) and (b) are i = 1 and 13; i = 1,

7 and 13 in (c) and (d); i = 1, 5, 9 and 13 in (e)and (f). i = 1, 4, 7, 10 and 13 in (g) and (h).

For a small optical tweezer frequency, the eigenfrequencies grow as ωot increases. Note

that when ωot keeps increasing, the eigenfrequencies of Np modes grows like ωz(x) + ωot

whereNp denotes the number of pinned ions. The otherN−Np eigenfreqencies, however,

approach to fixed values in the limit of large ωot. The reason why these frequencies are

bounded is that, as ωot gets large, the ”pinned ions” act more like a fixed one, leaving

N −Np degrees of freedom.

We calculate the lowest mode frequency ωlow of the ion chain with different N when

applying optical tweezers regularly on one of every 10 ions. As an example, we choose
171Yb+ ions and see how the lowest frequency scales with increasing number of ions while

keeping the minimum separation d0 = 10 µm. The result is shown in Figure 2.5. We

find for a typical ion trap that contains a few tens of ions, even though the application

of tweezers does raise the lowest mode frequency, its value is mainly determined by the

trapping frequency. However, as more and more ions are added and the global trap gets

shallower, the effect due to optical tweezers becomes more and more dominant. On the

other hand, the enhancement of the lowest frequency has an upper bound as the tweezer
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strength increases. Explicitly, we compare the lowest mode in the two cases of strictly

fixing the end ions in space and “optical pinching” the end ions by frequency 2π × 500

kHz. We find that the deviation of the frequency between these two cases is within 1%.

This suggests that the pinned ions set potential “walls” for other ions. Most importantly,

it can be seen that, without tweezers, the lowest mode approaches to zero frequency in

the limit of a large-scale array. The zero-frequency mode is equivalent to pure translation,

and is extremely hard to be cooled for charged particles. By means of optical tweezers,

the longitudinal fundamental frequencies are provided by pinned ions. This feature does

not depend on the global trap and is thus scalable.
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Figure 2.2: The equilibrium position of ions. The length unit is zs. The dotted line shows
the separation between central ions decreases as number of ions increases [31].
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Figure 2.3: The normal mode frequencies of ions. The frequency unit is trapping fre-
quency ωz. ωx(y) = 10ωz.
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Figure 2.4: The (a)(c)(e)(g) longitudinal and (b)(d)(f)(h) transverse mode frequencies of
13 ions applied by optical tweezers periodically with the tweezers period (a)(b) 12, (c)(d)
6, (e)(f)4, and (g)(h)3.
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Figure 2.5: The mode frequency of the lowest mode. 171Yb+ ions are trapped with the
minimal spacing d0 = 10 µm. We apply optical tweezers periodically on the first of every
10 ions.
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Chapter 3

Sympathetic cooling for large-scale

computing

3.1 Overview

In experiments, a large chain is hard to be constructed. For an ion array of small size, the

typical process is via turning on the RF trap, applying Doppler pre-cooling, and waiting

for ions to enter the trap and be captured. As more ions are desired, the longitudinal

confinement needs to be adjusted at the same time. Otherwise, the ion spacing decreases

as the number of ions increases, causing strong Coulomb interaction that contributes to

heat. On the other hand, lowering the longitudinal confinement slows down the dynamics

the z direction.

To overcome the challenge of construction, we propose to assemble small ion arrays

into a long one. By controlling the DC voltages that provide the longitudinal potential,

one can realize many local minima each of which can be considered as a small ion trap.

Similar to the ion shuttling proposal, small arrays can be moved and merged by varying

the voltages. But, at this stage, ions have not yet contained quantum information. The

Doppler cooling laser can be still on to stabilize the ion array.

When the length of the ion chain becomes large, the majority of ions sits at the flat

bottom of the potential. Coulomb interaction from both sides cancels out as long as ions

23



doi:10.6342/NTU201800509

are distributed uniformly. Under this condition, we propose to use optical tweezers that

pin the ions in space. The optical tweezers provide local trapping frequencies, which can

help stabilize the linear structure. By arranging optical tweezers periodically, the length

of an ion array can be arbitrarily long in principle.

During computing, cooling is still an important issue. Ions will heat due to background

noise which is induced by, for example, the fluctuation of voltage of the electrodes and

micromotion [34]. G.-D. Lin et al. showed that a high-fidelity gate can be achieved at

Doppler temperature by using the transverse-mode gate operation [28, 30]. For long-time

gate processing, we should apply laser cooling continuously to maintain the ion chain at

such a low temperature. However, an ion which is Doppler cooled can not participate

in quantum computation because its qubit state will be destroyed repeatedly during the

cooling process. The solution to this problem is via sympathetic cooling [16]. Under

sympathetic cooling, a subset of ions (cooling ions) are laser cooled continuously and

play the role of “heat drain”. The motional occupation of other ions (qubit ones) will

decrease through heat exchange (due to Coulomb interaction) between ions (Figure 3.1).

G.-D. Lin et al. showed that in principle we can cool a large ion crystal efficiently by

arranging the cooling ions periodically [17].

In this chapter, we discuss the ions’ motion under sympathetic cooling associated with

optical tweezers. First, we show the motional steady state of ions when arranging laser

cooling and optical tweezers periodically. Then, we apply optical tweezers on just two

chosen ions that contain two computational ions in between. Finally, we study the asso-

ciated relaxation dynamics and find the timescale of heat equilibration.

3.2 Model

We will discuss the motion of the ions in this section. Assume that each ion couples to an

individual heat bath, which depends on laser cooling or background heating. Besides the

harmonics potential and the Coulomb force, a random kick due to background noise also

acts on the ion. The motion of ions are described by the Heisenberg-Langevin equation
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Figure 3.1: The architecture of sympathetic cooling. The cooling ions play a role of the
heat drain. The computational ions will be cooled through the heat exchange due to the
Coulomb interaction.

[17, 35]:  ẋξi = pξi/m

ṗξi = −
∑

j A
ξ
ijx

ξ
j − γξi p

ξ
i/m+

√
2γξi ζ

ξ
i (t),

(3.1)

where xξi , p
ξ
i are the ith ion’s displacement and momentum operators along the longitu-

dinal (ξ = x) and transverse (ξ = y, z) directions respectively. The elements of the

matrix Aξ are Az
ii = mω2

z,i +
∑

j ̸=i
e2

4πϵ0
2

|z0i −z0j |
, Az

ij = − e2

4πϵ0
2

|z0i −z0j |
, Ax(y)

ii = mω2
x(y),i −∑

j ̸=i
e2

4πϵ0
1

|z0i −z0j |
, and Ax(y)

ij = e2

4πϵ0
1

|z0i −z0j |
, which are defined in Eq. (2.2). Because the

motion of the x, y, and z are decoupled, we drop the superscription ξ for convenience. The

driven rate γi characterizes the heat exchange due to laser cooling or the background hea-

ting. The random kick has the form ζi(t) = −i
√

h̄mωk

2
Gik(bk − b†k), where ωk,Gik are the

mode frequency and the mode function of the kth mode, and bk is the phononic field ope-

rator of the kth mode. For aMarkovian bath, we have
⟨
b†k(t)bk′(t

′)
⟩
= nB

k (T )δkk′δ(t−t′),

where nB
k (T ) = 1/(exp(h̄ωk/kBT )−1) is the phonon number of the kth mode at tempera-

ture T . Therefore, the correlation of the random kick is ⟨ζi(t)ζj(t′)⟩ = δijδ(t− t′)Θi(Ti),

where Θi(Ti) =
∑

k h̄mωkG
2
ik(n

B
k (Ti) +

1
2
), and Ti is the temperature of the bath of the

ith ion.

Equation (3.1) can be recast into q̇ = −Ωq+ η(t), where we define

q ≡ (x1, x2, . . . , p1/m, p2/m. . . )⊤ =

 {xi}

{pi/m}

 ,
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η(t) ≡

 {0}{√
2γiζi/m

}
 ,

and

Ω ≡

 0 −I

[Aij/m] [δijγi/m]

 ,

which can be diagonalized as [U−1ΩU ]αβ = λαδαβ . The formal solution to Equation (3.1)

is

q(t) = e−Ωtq(0) +
∫ t

0

dτ eΩ(τ−t)η(τ).

Then we have the variance

⟨
q2µ(t)

⟩
=

N∑
s=1

2N∑
α,β=1

UµαUµβ

(
e−(λα+λβ)t

[ ⟨
x2s(0)

⟩
U−1
βs U

−1
αs

+
⟨
(ps(0)/m)2

⟩
U−1
β,s+NU

−1
α,s+N

]
(3.2)

+ (1− e−(λα+λβ)t)
2γsΘs

λα + λβ
U−1
β,s+NU

−1
α,s+N

)
,

where µ = 1, 2, . . . N represent the position, and µ = N + 1, N + 2, . . . 2N represent

the momentum. The position fluctuation of the ith ion is δxξi ≡
√⟨

xξi

⟩
. To get Equation

(3.2), we have used ⟨ηi⟩ = 0. The first two terms depend on initial conditions, which

vanish in the long-time limit as long as Re{λi} > 0. Therefore, only the third terms

survives, which is determined by the baths.

There are two major sources of computational error in ion trap based quantum compu-

ting. Here we only focus on the scheme of transverse mode quantum gate for its advantage

of being insensitive to the temperature [28]. The first type of error comes from the next

order correction to the Lamb-Dicke approximation. The estimated infidelity is given by

[10]

δF x
i ∼ π2η4i n

2
x ∼ π2(|∆k|δxi)4/4, (3.3)

where η ≡ |∆k|
√

h̄
2mωx

is the Lamb-Dicke parameter with |∆k| wavevector difference of

two counter-propagator laser beams, and nx is the phonon number of the transverse mode.
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The second type of error reflects the longitudinal position fluctuation so that the ion

may experience non-uniformity of the laser field. Typically, a laser beam incident trans-

versely can be approximated by Ω(z) ∼ Ωe−((z−z0i )/w)2 . The associated infidelity is [30]

δF z
i ∼ π2(δzi/w)

4/4. (3.4)

Note that in [30], it has been shown that with Doppler cooling, the infidelities δF z ∼ 10−4

and δF x ∼ 10−3 at Doppler temperature TD. In the following, we will mainly discuss δxi

and δzi relative to the value at TD. From Equation (3.3) and (3.4), we know δF ξ ∝ (δxξ)4.

If δxξ doubles, the error is 16 times.

For convenience, we take the minimum separation of ions d0 as the length unit, ω0 ≡√
e2

4πϵ0
1

md30
as the frequency unit, and the ion’s mass m as the mass unit. Throughout this

chapter, we take the example of 171Yb+ ions arranged in an array withminimum separation

10 µm, so d0 = 10 µm, ω0 = 2π × 143 kHz.

3.3 Steady state

3.3.1 Thermal equilibrium

First we consider the thermal equilibrium distribution. The whole ion chain is under a defi-

nite temperatureT . From xi =
∑

kGik

√
h̄

2mωk
(ak+a

†
k), we have ⟨x2i ⟩ =

∑
kG

2
ik

h̄
2mωk

(2nk+

1) =
∑

kG
2
ik

h̄
2mωk

coth
(

h̄ωk

2kBT

)
. Figure 3.2 shows the position fluctuation and the corre-

sponding infidelity of 21 ytterbium ions withωz = 2π×34 kHz, ωx = 2π×5.1MHz under

Doppler temperature TD = 0.5 mK. The position fluctuation of the longitudinal mode is

about 10−2d0, and the position fluctuation of the transverse mode is about 10−4d0. Note

that the infidelity of the longitudinal and the transverse modes are attributed to different

mechanism (Equation (3.4) and (3.3) respectively). Though δz is smaller than δx about 2

orders of magnitude, the infidelities of the two directions are both about 10−4.

For the transverse mode, all the ions has approximately the same fluctuation δx ≈√
kBTD

mω2
x
. It shows that we can use δxi to reflect the “local temperature” of a single ion.
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The reason why each ion has its local temperature is that the transverse trapping frequency

dominates all the energy scale. Explicitly, here we have ωx ≫ ω0 ? ωz, where ω0 cha-

racterizes the Coulomb coupling between neighboring ions. The transverse motion of a

single ion is hard to be affected by the other ions so the transverse position fluctuation is

mainly determined by its local temperature. On the contrary, since the Coulomb coupling

is comparable to or even larger than the longitudinal characteristic energy, the position

fluctuation for the longitudinal mode depends on the ions more collectively and therefore

the longitudinal one is called the “soft mode.”
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Figure 3.2: (a)(b)The position fluctuation and (c)(d) its corresponding infidelity of 21
171Yb+ ions with minimum separation d0 = 10 µm under Doppler temperature TD = 0.5
mK. (kBTD/h̄ = 2π× 10Mhz = 70ω0.) Other parameters: ωz = 2π× 34 kHz = 0.24ω0,
ωx = 5.1MHz = 35.7ω0, |∆k|d0 = 157, and w = 0.25d0 [17].

3.3.2 Sympathetic cooling

Now we discuss the steady-state profile of each ion that connects to an individual heat

bath. The steady state position fluctuation of the µth ion is given by Equation (3.2) when

t → ∞. Since usually all the eigenvalues λα(β) have positive real parts, the exponential
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terms vanish. The variation of the steady state becomes

⟨
q2µ
⟩
=

N∑
s=1

N∑
α,β=1

UµαUµβ
2γsΘs

λα + λβ
U−1
β,s+NU

−1
α,s+N , (3.5)

which is independent of the initial condition ⟨x2s(0)⟩ and ⟨p2s(0)⟩.

Here, we have a subset of ions continuously cooled, and the other ions suffer from

heating from the background. We assume that , for the cooling ions, the bath temperature

Ti and the driven rate γi are determined by Doppler laser cooling parameters. For the

heating ions, we use the background phonon heating rate to characterize the driven rate

γbg and the background temperature Tbg. The phonon heating rate of the kth mode is

estimated by γbgnB
k ∼ γbg

kBTbg
h̄ωk

. To simplify the discussion, we assume that the phonon

generation rates are almost the same around all the motional modes. This rate does not

individually dependent on temperature. Instead, it is then characterized by the product

κ = γbgTbg. For a given κ, we have the freedom to vary Tbg and hence γbg accordingly.

Consider 21 ions with 5 ions on the both ends cooled continuously. Denote the set of

cooling ions byC and heating ions byH . We set Ti = TD, γ = 0.1 for i ∈ C and Ti = Tbg,

γi = κ/Tbg for i ∈ H . The steady-state position fluctuation profiles under different

background temperatures are shown in Figure 3.3. We set κ = 0.01h̄/kB. The red dotted

line shows the ideal case which corresponds to the thermal equilibrium profile under TD.

We can see that as the background temperature increases, the position fluctuation profile

of the heating ions grows, but converges to an upper bound. It gives the worst case of the

infidelity. In the following discussion, we will discuss the “worst-case scenario” profile

by taking Tbg = 106TD and γbg = 10−10ω0, which is extremely unrealistic but sets an

upper bound to realistic situations.

When more ions are included in the trap, we can arrange the cooling ions periodically

to cool the ion chain efficiently. Figure 3.4 shows the steady-state position fluctuation

of 121 ions under periodic sympathetic cooling. We apply laser cooling continuously on

the first of every 10 ions, i.e., the cooling ions are the 1st, 11th, . . . ,and 121st ones.

For the longitudinal mode, the position fluctuation profile is almost identical to the ideal
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Figure 3.3: The steady state profile of 21 ions under sympathetic cooling with different
background temperature. 5 ions on the both ends are cooled continuously. The ideal case
corresponds to the thermal equilibrium profile under TD. ωz = 0.24ω0, ωx = 36ω0 [17].

case. However, for the transverse mode, the position fluctuations of the heating ions are

larger than the ideal case. Again, it shows that the longitudinal mode is more collective so

that the heat exchange is easier to be accomplished. But the transverse mode is not. The

maximum fluctuation of the transverse mode appears in the segments on the both ends of

the ion array. The maximum fluctuation is about 2.1 times compared to the ideal case and

gives about ∼20 times of the infidelity. If we discard the end segments, δxi for i = 12 to

110 is no more than 1.2 times of δxi for the ideal case. The infidelity is only about 2 times

larger than the ideal case.

3.4 Steady state profile with optical tweezers

3.4.1 Longitudinal modes for periodic arrangement of tweezers

As the number of ions increases, the trapping frequency ωz should decrease to keep the

ions’ spacing a constant. As a result, the position fluctuation of the longitudinal direction
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Figure 3.4: The steady profile of 121 ions under periodic sympathetic cooling. The index
of the cooling ions are i = 1, 11, . . . , 121. For i ∈ C, γi = 0.1ω0, Ti = TD. For i ∈ H ,
γbg = 10−10ω0, Tbg = 106TD. ωz = 2π× 7.2 kHz= 0.05ω0, ωx = 2π× 5.1MHz= 36ω0

[17].

grows rapidly and cause larger infidelity. We apply optical tweezers on the cooling ions

to “pin” these node ions. The other ions’ fluctuation will decrease through the collective

motion.

Consider the 121 ions under sympathetic cooling with cooling ions arranged periodi-

cally with a period of 10 ions. Nowwe apply optical tweezers of frequency ωot = 2π×200

kHz also on the cooling ions. The position fluctuation profiles are plotted in Figure 3.5.

The green line shows δz when we apply the optical tweezers, and the magenta dotted line

shows the ideal profile. We can see that the steady-state profile can also reach the ideal

case when we turn on the optical tweezers, and the values of δzi are decreased by 1/2

compared to turning off the tweezers.

To scale up the ion trap quantum computer, we apply laser cooling and the optical

tweezers regularly every 10 ions for largeN . We use the average of δz of the computation

ions to quantify the efficient of cooling. Define δzavg ≡ 1
n(H)

∑
i δzi for 11 < i < N − 10

and i ∈ H , where n(H) is the number of the heating ions. We plot δzavg versus N around
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the range N = 11 to 401 in Figure 3.6. When we turn on the optical tweezers, the curve

increases slowly asN gets larger. It shows that applying optical tweezers can improve the

stability of the longitudinal mode of the ion chain.
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ωot off, periodic cooling

ωot off, ideal
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Figure 3.5: The position fluctuation of longitudinal mode under sympathetic cooling as-
sociated with optical tweezers. Blue curve: applying laser cooling on one of 10 ions. Red
dotted curve: all the ions are under TD. Green curve: applying laser cooling associated
with optical tweezers with ωot = 2π×200 kHz= 1.4ω0 on one of every 10 ions. Magenta
dotted curve: applying optical tweezers on one of every 10 ions while all of ions are under
TD. Other parameters are same as Figure 3.4.
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Figure 3.6: The average of position fluctuation δzavg versus the ion number N . We make
the minimum separation of ions d0 = 10 µm for every N .
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3.4.2 Transverse mode for periodic arrangement of tweezers

Now we also examine the effect of optical tweezers on the transverse mode although it is,

relatively speaking, not relevant since the tweezer frequency is comparable to the trans-

verse one.

Once again, we cool the 121-ion array by arranging the cooling ions periodically with

a period of 10 ions. We apply the optical tweezers on the cooling ions with the frequency

ωot = 2π× 200 kHz in the x-direction now. Figure 3.7 shows the position fluctuation δx.

Surprisingly, when we turn on the optical tweezers, δxi for i ∈ H are 10 to 20 times of

δxi when turning off the optical tweezers. Unlike the longitudinal mode, the efficiency

get worse when we apply the optical tweezers on the transverse direction.
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Figure 3.7: The position fluctuation of transverse mode under sympathetic cooling asso-
ciated with optical tweezers. We can see that the ions have large position fluctuation when
we turn the optical tweezers. Blue curve: applying laser cooling on one of 10 ions. Red
dotted curve: all the ions are under TD. Green curve: applying laser cooling associated
with optical tweezers with on one of every 10 ions. The parameters are same as Figure
3.5.

The reason why the efficiency is worse when we apply the tweezers on the x direction

is as follows. By considering the transverse mode only, we can treat the ions as an array
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of oscillators. Every oscillator has weak coupling with each other. If the frequency of one

oscillator is off resonant to the next one, they can hardly exchange energy. As a result,

the optical tweezers play a role of the “heat block.” We call the ion applied by the optical

tweezers “pinned ion” in the following discussion. If we cool the pinned ion, heat cannot

be dissipated through the heat drain efficiently. Hence we have worse cooling efficiency.

To verify this argument, we apply the optical tweezers on heating ions rather than the

cooling ions, and see the position fluctuations δx. Figure 3.8 shows δx when we still cool

i = 1, 11, …, 121 ions and apply the optical tweezers on i = 23, 49, 69, 87 (marked by

the cross symbol). We can see that those pinned ions have significant large δx, and other

ions’ position fluctuations are approximately same as the no-tweezers case (shown in the

inset).

In Figure 3.9(a), we still cool i = 1, 11, …, 121, and pin i = 42, 50, 92, and 100 ions.

For i = 42 to 50, and i = 92 to 100, δxi forms a humpwhile other ions have approximately

same δx as no-tweezers case. This is because there are no heat drain in these two segments,

and the ends segments are blocked by the pinned ions. The segments cannot be cooled

well.

In contrast, we can arrange the pinned ion outside the cooling ion. In Figure 3.9(b) ,

we pin the ion for i = 41, 51, 91, 101 (marked by the cross symbol), and cool the ion on

i =42, 50, 92, 100 (marked by the cyan diamond). The segment i = 42 to 50 and i = 92

to 100 can be cooled well, and the other ions have large position fluctuations compared

with the no-tweezers case. Again, it shows that pinned ion blocks the heat propagation.

The segment with cooling ions on the both end has small position fluctuation. It justifies

the idea of a “local trap,” which will be discussed in the next section.
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Figure 3.8: The position fluctuation of transverse mode under sympathetic cooling. The
optical tweezers are applied on the heating ions. Cooling ions: i = 1, 11, …, 121. Pinned
ions: i = 23, 49, 69, 87. The other parameters are same as Figure 3.5
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Figure 3.9: The position fluctuation of the transverse mode. (a)Cooling ions: i = 1, 11,
…, 121. Pinned ions: i = 42, 50, 92, 100. (b)Cooling ions: i = 42, 50, 92, 100. Pinned
ions: i = 41, 51, 91, 101. The other parameters are same as Figure 3.5
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3.5 Local trap

In the previous discussion, we arrange the cooling ions and pinned ions periodically along

the ion chain. It requires lots of laser beams. It can be expected that, if the ions that

get involved in the quantum gate operations are in a local segment defined by two sets

of optical tweezers, we need to just cool that segment by applying sympathetic cooling

within the segment (Figure 3.10). Further, the longitudinal position fluctuation δz will

be reduced because of the enhancement of the eigen-mode frequency. The pinned ions

effectively blocked the heat exchange so that the fluctuations outside this segment have

insignificant contributions.

x
z

y

laser cooling

laser cooling

optical tweezer

optical tweezer

Figure 3.10: The setup of the local trap.

In Figure 3.11, we cool the 31st and 41st ion. We can see that the computational ions

(i = 32 to 40) have smaller position fluctuations compared to the other heating ions. For

the longitudinal mode, δzi for i = 32 to 40 are approximately 1.04 times compared to δzi

under periodic cooling with a period of 10 ions. When we apply the optical tweezers on

30th and 42nd ions, δzi gets much smaller. For transverse mode, the efficiency of turning

on or off the optical tweezers are roughly the same. The average of position fluctuation

δxavg for i = 32 to 40 is 1.1 (1.2) when we turn off (on) the optical tweezers.

Figure 3.12 shows the position fluctuations profile of the local traps forN = 121. Each

subfigure shows we apply laser cooling and optical tweezers on the different ions. The

cooling ions are marked as the cyan diamond symbols, and the pinned ions are marked

as the cross symbols. For the longitudinal mode, pinning the ions reduces the position

fluctuation. The efficiency is even better compared to the periodic cooling without optical
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tweezers. For the transverse mode, the efficiency depends on the cooling ions’ positions.
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1e 3 (b) transverse

ωot off

ωot on

periodic
cooling
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Figure 3.11: The position fluctuations of (a) longitudinal and (b) transverse mode. Blue
curve: applying laser cooling on the 31st and the 41st ions. Green curve: applying laser
cooling on the 31st and the 41st ions and applying optical tweezers on 30th and 42nd ions.
Magenta curve: applying laser cooling on one of every 10 ions. Red dotted line: every
ion is under TD. The other parameters are same as Figure 3.5.
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Figure 3.12: The position fluctuation profile of the local trap for N = 121. (a)(b)(c):
Longitudinal mode. (d)(e)(f): Transverse mode. (a)(d): cooling ions: i = 11, 21, pinned
ions: i = 10, 22. (b)(e): cooling ions: i = 31, 41, pinned ions: i = 30, 42. (c)(f): cooling
ions: i = 51, 61, pinned ions: i = 50, 62. Blue curve: Turn off the optical tweezers.
Green curve: Turn on the optical tweezers. Red curve: every ion is under TD without the
tweezers. The parameters are same as Figure 3.5.
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3.6 Relaxation dynamics

In this section, we will discuss the relaxation dynamic of the local trap. We plot the time

evolution of δzi and δxi in Figure 3.13. We take the time unit t0 ≡ 2π/ω0 (∼ 7µs). We

set all the ions under 10TD initially without the optical tweezers. At t = 0, we turn on

the laser cooling on the cooling ions and turn on the optical tweezers on the pinning ions.

Every subfigure shows applying laser cooling on different ions. The solid curves show the

time evolution of δzi(δxi) without the tweezers, ans the dashed curves show the evolution

when we turn the optical tweezers. For both longitudinal and transverse mode, it is faster

to cool the ions when we apply the optical tweezers.

For the longitudinal mode, we take coarse-grain average by time interval 10t0 because

δzi oscillates rapidly. In Figure 3.13(a), (b), and (c), it takes about 104t0, 5000t0, and

8000t0 to reach the steady state δzst when we turn off the tweezers. When the tweezers are

turned on, it takes only 500t0, 700t0 and 700t0 to reach the same δzst. The cooling time is

shorter by few times to one order of magnitude when we apply the optical tweezers. The

cooling time when we turn on the tweezers is less than 1000t0 ∼ 1 ms.

For the transverse mode, δx(t) can be smaller than the steady state δxst during the

cooling process. In Figure 3.13(d), (e), and (f), it takes about 2 × 104t0, 6 × 104t0, and

7000t0 to reach the minimum δx when the tweezers are turned off. When we turn the

tweezers, it takes only 104t0, 7000t0, and 5000t0 to reach the minimum δx, which are

faster than the no-tweezers case.

3.7 Gate design

In this section, we demonstrate the how to construct a CFP gate in the ion traps by using

the method proposed by S.-L. Zhu et al. [36]. We chop the spin-dependent laser pulse

into 9 time segments to maximize the fidelity of the computation. In Figure 3.14, we cool

i = 51 and 61, and apply the tweezers on i = 50 and 62 on the x-direction. The gate ions

are i = 55 and 57. Figure 3.14(a) shows the maximum fidelity with the different gate time

and the laser frequency. Figure 3.14(b) shows the laser pulse shape when the gate time
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Figure 3.13: The time evolution of δzi (a)(b)(c) and δxi (d)(e)(f) for different segments of
local traps. The cooling and pinned ions of each subfigure are same as Figure 3.12 The
ion chain is under T = 10TD at t = 0. The other parameters are same as Figure 3.5.

τ = 500 × τ0 (τ0 ≡ 2π/ωx) and the laser frequency µ = 0.982ωx (marked by the arrow

in Figure3.14(a)). The infidelity is only 10−13.

3.8 Chapter summary

To sum up, we calculate the position fluctuation of the ions as indication of cooling effi-

ciency under sympathetic cooling together with optical tweezers. We find that for longitu-

dinal mode, the optical tweezers together with sympathetic cooling significantly improve

the cooling efficiency. For transverse mode, the optical tweezers play the role of the “heat
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block”. We show that for the local gate operation, we only need to cool the ions near

computational ions rather than the whole ion chain. Finally, we discuss the relaxation dy-

namics. We find that the cooling time is shorter when we apply the optical tweezers than

that when we do not.
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Figure 3.14: Quantum gate design for N = 121. Cooling ions: 51, 61. Pinned ions: 50,
62. Gate ions: 55, 57. (a)The fidelity with different gate time and laser frequency. (b) The
laser shape with τ = 500τ0 and µ = 0.982ωx (denoted by the arrow in (a)). δF = 10−13.
The other parameters are same as Figure 3.5.
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Chapter 4

Conclusion

In this thesis, we propose a scalable ion trap quantum computer scheme. We use optical

tweezers to stabilize the ion chain, and use sympathetic cooling method to suppress the

background heating. For an ion array arrange in the z-direction, the transverse trapping

frequency ωx is much greater than the longitudinal trapping frequency ωz. The trapping

frequency ωz goes to 0when the number of ion increases, causing the difficulty to scale up

the ion trap system. By applying the optical tweezers, we can enhance the mode frequency

and hence improve the efficient of cooling.

For large number of ions, the optical tweezers dominate the motional mode frequency.

The upper bond of themode frequency corresponds to themode frequencywhen the degree

of freedom of the node ions are removed.

Here we conclude our findings and the proposed architecture for large-scale quantum

computing. As a linear Paul trap is still regarded as the simplest configuration of imple-

mentation compared to other schemes such as ion shuttling and quantum network. Tra-

ditionally, a large-scale ion array uses DC voltages to provide longitudinal confinement,

which, in order for finite ion separation for individual addressability, must be very weak

so that its corresponding motional excitation (phonon) is very hard to be removed. The

significance of applying optical tweezers has three folds. First, it raises the frequency of

the ground mode from zero, thus stabilizing the ion array and making possible for further

laser cooling. Secondly, optical tweezers pin some of the ions so that these pinned ions

can serve as “heat blocks.” Therefore, parallel computation is possible by means of the
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supposedly collective motion: Gate operations are separated and also protected by optical

tweezers. Thirdly, the scheme can be repeatedly extended with only linear increase of the

cost. In the following, we summarize in more detail the effects of the optical tweezers on

the collective motion including longitudinal and transverse modes as well as the cooling

and heating dynamics.

We have shown that the longitudinal and transverse modes behave differently because

their characteristic frequencies are separated. Typically, we have ωx ≫ ω0 ? ωz, where

ωx and ωz are transverse and longitudinal trapping frequencies of a Paul trap, respectively,

and ω0 =
√

e2

4πϵ0
1

md30
accounts for residual Coulomb interaction between ions. Therefore,

we can expect that the longitudinal mode is more collective and good for heat exchange.

A major source of error comes from the longitudinal motion, where the large displace-

ment lets the ion see spatial variation of the field due to the finite beam size of a Gaussian

beam. By applying optical tweezers (? 2π×500 kHz for the longitudinal mode), asN gets

large (∼ 500) while the spacing is kept about d0 (≈ 10 µm), the longitudinal frequency

(∼ 2π × 10 kHz) is mostly determined by the potential assuming that the “pinned ions”

fixed in space instead of the global trap. Thus, the optical tweezers reduce the position

fluctuation through stronger confinement than the case without tweezers. Combining the

technique of sympathetic cooling, the long ion array can then be stabilized and continu-

ously cooled.

As for the transverse mode, if the applied optical tweezers provide additional confine-

ment for the transverse mode, it becomes a negative factor, which can make the position

fluctuation even larger. This is due to the heat blocking effect of the transversely pinned

ions. Since the pinned ion has a higher frequency than its neighbors, the heat exchange is

less likely to occur. Note that the main source of error associated with the transverse mode

is due to the anharmonicity that contributes to the gate fidelity. Unlike the longitudinal

part, it has nothing to do with the structural stability of the ion array so the scalability is

assured. Such transverse position fluctuation can be suppressed by applying sympathetic

cooling within a region sandwiched by two optical tweezers. It is expected that the heat

sink in such arrangement can be very efficient so also scalable.
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Further, we propose the concept of “local traps” in a large-scale ion chain. We consider

only a small segment of the ion array defined by two optical tweezer beams. In other

words, the segment is “locally trapped” by two pinned ions. When a quantum gate is

operated within the segment, we can just cool this segment instead of cooling the whole

ion array. It helps us to reduce the overhead of laser cooling and optical tweezers. For

the longitudinal motion, the position fluctuations of the ions in the local trap is nearly

halved compared to the case by distributing sympathetically cooled ions without optical

tweezers. However, for the transverse mode, the position fluctuation is slightly larger but

nomore than two times. Note that the actual distribution depends onwhich ions are chosen

to be pinned or sympathetically cooled when the size of the ion chain is finite. Its trend

shown here is representative. We also study the relaxation dynamics under the local trap

architecture. For both longitudinal and transverse modes, the cooling time is shorter by

about an order of magnitude than the case without tweezers.

As future work, we plan to explicitly formulate the local trap idea by employing the

open system theory and language, and derive the effective motional spectrum. This can

further help us understand and explore the possibility of “local trap sideband cooling.”
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Appendix A

Gate design

In this appendix, we describe the pulse shaping scheme [28] to design a two-qubit gate.

The procedures have been explicitly discussed in Reference [37]. For completeness of

this thesis, we here summarize the method in the following.

Since this scheme is based on the transverse mode, we apply on the two qubit ions

bichromatic laser field that generates the spin-dependent forces along the transverse di-

rection. The Hamiltonian of the laser-ion interaction under the Lamb-Dicke limit in the

interaction picture is given by

∑
n,k

h̄Ωn(t) sin(µt)Gk
nη

k(a†ke
iωkt + ake

−iωk)σz
n, (A.1)

where Ωn(t) is the Rabi frequency of the laser applied on the nth ion, µ is the beatnote

frequency of bichromatic field, Gk
n is the mode function coupling the nth ion and the kth

mode, ηkn = |∆k|
√

h̄
2mωk

is the Lamb-Dicke parameter with the wavevector difference

of the two beams |∆k|, ak (a†k) is the phonon annihilation (creation) operator of the kth

mode, σz
n is the Pauli-z matrix for the nth ion.

Using the second-order Magnus expansion, we find the evolution operator

U(τ) = exp

[
i
∑
n

ϕn(τ)σ
z
n + i

∑
l<n

ϕln(τ)σ
z
l σ

z
n

]
, (A.2)
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where

ϕn =
∑
n

αk
na

† + αk∗
n a (A.3)

with

αk
n =

∫ τ

0

dtηkGk
nΩn(t) sinµteiωkt, (A.4)

and

ϕln(τ) =

∫ τ

0

dt2
∫ t2

0

dt1
∑
k

ηkl η
k
nG

k
lG

k
nΩl(t2)Ωn(t1) sinµt2 sinµt1 sinωk(t2 − t1).

(A.5)

Suppose the gate implemented involves the ith and jth ions. We setΩi(t) = Ωj(t) = Ω(t),

and Ωn(t) = 0 for others.

To construct a CPF gate, we need to find appropriate Ω(t) that satisfies the constraints

ϕi(j) = 0, (A.6a)

ϕij(τ) =
π

4
. (A.6b)

A straightforward strategy is to chop Ω(t) intoM equal segments. We have Ω(t) = Ωm

when τm−1 < t < τm with τm = mτ/M . Equations (A.6) give 2N + 1 constraints. To

exactly fulfill A.6, we need 2N + 1 independent parameters so thatM = 2N + 1.

Instead of exactly eliminating ϕi(j), we can useM ≤ 2N +1 segments and maximize

the fidelity. The fidelity is defined by

F = ⟨ψf |Trm{U(τ)(|ψ0⟩⟨ψ0| ⊗ ρth)U
†(τ)}|ψf⟩ , (A.7)

where the final qubit state |ψf⟩ = eiπσ
z
i σ

z
j /4 |ψ0⟩ with the initial qubit state |ψ0⟩, ρth is the

density matrix of the phonon, and Trm denotes the trace over all phonon Fock states.

Choose a typical initial qubit state |ψ0⟩ = (|0⟩i+ |1⟩i)⊗ (|0⟩j + |1⟩j), and assume that

the phonons are in the thermal state ρth =
⊗N

k=0
1

1−eβh̄ωk

∑∞
nk=0 e

−nkh̄ωk |nk⟩⟨nk|. Then
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the infidelity becomes

δF = 1− F =
1

8
(6− 2(Γi + Γj)− Γ+ − Γ−), (A.8)

where

Γi(j) = exp

(
−
∑
k

∣∣αk
i(j)

∣∣2β̄k/2), (A.9a)

Γ± = exp

(
−
∑
k

∣∣αk
i ± αk

j

∣∣2β̄k/2), (A.9b)

with β̄k = coth
(

h̄ωk

kBT

)
. Our goal now is to find a vector X = (Ω1,Ω2, . . .ΩM)⊤ to

minimize Equation (A.8) under the constraints Equation (A.6b).

We can use the quadratic minimization method to simplify the calculation. We focus

on the infidelity δF ∼ 0, which corresponds to αk
i(j) ∼ 0. We take Taylor expansion

e−x ≈ 1− x+O(x2) for Γ’s. Then the infidelity becomes

δF ≈ 1

4

∑
k

β̄k(
∣∣αk

i

∣∣2 + ∣∣αk
j

∣∣2). (A.10)

Define Hk
i = (Hk

i1, H
k
i2, . . . H

k
iM)⊤ with Hk

im = ηkGk
i

∫ τm
τm−1

dt eiωkt sinµt. Then αk
i =

Hk
i ·X , where · denotes the inner product. Further,

∑
k β̄k
∣∣αk

i

∣∣2 can be rewritten asX⊤AiX

with the matrix elementAi
mm′ =

∑
k β̄kH

k
imH

k∗
im. DefineA = 1

4
(Ai+Aj). Finally we get

δF = X⊤AX. (A.11)

The conditional phase ϕij (Equation (A.5)) can be also expressed in the matrix form

ϕij = X⊤BX, (A.12)
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where the matrix Bmm′ = Pmm′/2 +Qmδmm′ with the definition

Pmm′ =

∫ τm

τm−1

dt2
∫ τm′

τm′−1

dt1
∑
k

ηkl η
k
nG

k
lG

k
n sinµt2 sinµt1 sinωk(t2 − t1), (A.13a)

Qm =

∫ τm

τm−1

dt2
∫ t2

τm−1

dt1
∑
k

ηkl η
k
nG

k
lG

k
n sinµt2 sinµt1 sinωk(t2 − t1). (A.13b)

To minimize Equation (A.11) with constraint Equation (A.12), we use Lagrange unde-

termined multiplier method. The modified infidelity δF ⋆ = X⊤AX + λX⊤BX . To find

minimum value of δF ⋆, we make ∂δF ⋆

∂X⊤ = 0, which gives a generalized eigenvalue equa-

tion AX = λBX . By solving the eigenvectors and checking the associated infidelity, we

can obtain the proper X , which will be further re-scaled such that ϕij = π/4.
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