請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22678完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林俊彬(Chun-Pin Lin) | |
| dc.contributor.author | Yu-De Li | en |
| dc.contributor.author | 李昱德 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:24:22Z | - |
| dc.date.copyright | 2010-06-30 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-06-22 | |
| dc.identifier.citation | 1. Priya, S.G., et al., Skin Tissue Engineering for Tissue Repair and Regeneration. Tissue Engineering Part B: Reviews, 2008. 14(1): p. 105-118.
2. Wang, Y.C., et al., Fabrication of a novel porous PGA-chitosan hybrid matrix for tissue engineering. Biomaterials, 2003. 24(6): p. 1047-1057. 3. Muzzarelli R.A.A., Natural Chelating Polymers. New York, Pergamon Press, 1973. 4. Qurashi, M., et al., Studies on modified Chitosan Membranes. Journal of Applied Polymer Science, 1992 46(2): p. 255-261 5. Illum, L., et. al., Chitosan and Its Use as a Pharmaceutical Excipient. Pharmaceutical Research, 1976. 15(9): p. 1326-1331. 6. Khor, E., et al., Implantable applications of chitin and chitosan. Biomaterials, 2003. 24(13): p. 2339-2349. 7. Sannan, T., et al., Studies on chitin, 2. Effect of deacetylation on solubility. Makromolekulare Chemic-Macromolecular Chemistry and Physics, 1976. 177(12): p. 3589-3600. 8. Kumar, M.N.V.R., et al., A review of chitin and chitosan applications. Reactive & Functional Polymers, 2000. 46(1): p. 1-27. 9. Kumar, M.N.V.R., et al., Chitin and chitosan fibres: a review, Bulletin of Materials Science, 1999. 22(5): p. 905-915. 10. Muzzarelli, R.A.A., et al., The biocompatibility of dibutyryl chitin in the context of wound dressings. Biomaterials, 2005. 26(29): p.5844-5854. 11. Chang, K.L.B., et al., Heterogeneous N-deacetylation of chitin in alkaline solution. Carbohydrate Research, 1997. 303(3): p. 327-332. 12. Singla, A.K., et al., Chitosan: some pharmaceutical and biological aspects. Journal of Pharmacy and Pharmacology, 2001. 53(8): p. 1047-106. 13. Koyano, T., et al., Attachment and growth of cultured fibroblast cells on PVA/chitosan-blend hydrogels. Journal of Biomedical Materials Research, 1998. 39(3): p. 486-490. 14. Muzzarelli, R.A.A., et al., Determination of the Degree of Acetylation of Chitosans by First Derivative Ultraviolet Spectrophotometry. Carbohydrate Polymers, 1985. 5(6): p. 461-472. 15. Lehr, C.M., et al., In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers, International Journal of Pharmaceutics, 1992. 78(1): p. 43-48. 16. Muzzarelli, R.A.A., et al., Removal of Trace Metal Ions from Industrial Waters, Nuclear Effluents and Drinking Water, with the Aid of Cross-Linked N-Carboxymethyi Chitosan. Carbohydrate Polymers, 1989. 11(4): P. 293-306. 17. Liu, X.W., et al., Magnetic Chitosan Nanocomposites: A Useful Recyclable Tool for Heavy Metal Ion Removal. Langmuir, 2009. 25(1): p. 3-8. 18. Peniche-covas, C., et al., The adsorption of mercuric ions by chitosan. Journal of Applied Polymer Science, 1987. 46(7): p. 1147-1150. 19. Jha, N., et al., Removal of cadmium using chitosan. Journal of Environmental Engineering-Asce, 1988. 114(4): p. 962-974. 20. McKay, G., et al., The adsorption of dyes in chitin. III. Intraparticle diffusion processes. Journal of Applied Polymer Science, 1983. 27(8): p. 3043-3057 21. Khan, M., et al., The dielectric constant and solvent effect on the stabilities of copper(II) chloro complexes. Transition Metal Chemistry, 1997. 22(6): p. 604-605. 22. Rorrer, G.L., et al., Synthesis of Porous -Magnetic Chitosan Beads for Removal of Cadmiumions from Waste-water. Industrial & Engineering Chemistry Research, 1993. 32(9): p. 2170-2178. 23. Inoue, K., et al., Adsorption of Metal Ions on Chitosan and Crosslinked Copper(II)-Complexed Chitosan. Bulletin of the Chemical Society of Japan, 1993. 66(10): p. 2915-2921. 24. Kawamura, Y., et al., Adsorption of Metal-ions in Polyaminated Highly Porous Chitosan Chelating Resin. Industrial & Engineering Chemistry Research, 1993. 32(2): p. 386-391. 25. Baba, Y., et al., Adsorption Equilibria of Silver(I) and Coper(II) on N-(2-Hydroxylbenzyl)chitosan Derivative. Analytical Sceiences, 1994. 10(4): p. 601-605. 26. Milot, C., et al., Influence of Physicochemical and Structural Characteristics of Chitosan Flakes on Molybdate Sorption. Journal of Applied Polymer Science, 1998. 68(14): p. 571-580. 27. Guibal, E., et al., Enhancement of Metal Ion Sorption Performances of Properties Chitosan: Effect of the Structure on the Diffusion. Langmuir, 1995. 11(8): p. 591-598. 28. Piron, E., et al., Interaction between Chitosan and Uranyl Ions. Role of Physical and Physicochemical Parameters on the Kineticsof Sorption. Langmuir, 1997. 13(6): p. 1653-1658. 29. Uhrich, K.E., et al., Polymeric systems for controlled drug release. Chemical Reviews, 1999. 99(11): p. 3181-3198. 30. Alvarez-Lorenzo, C., et al., Microviscosity of hydroxypropyl cellulose gels as a basis for prediction of drug diffusion rates. International Journal of Pharmaceutics, 1999. 180(1): p. 91-103. 31. Agnihotri, S.A., et al., Recent advances on chitosan-based micro- and nanoparticles in drug delivery. Journal of Controlled Release, 2004. 100(1): p. 5-28. 32. Qiu, Y., et al., Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews, 2001. 53(3): p. 321-339. 33. Teomim, D., et al., Ricinoleic acid based biopolymers, Journal of Biomedical Materials Research, 1999. 45(3): p. 258-267. 34. Gupta, K.C., et al., Drug release behavior of beads and microgranules of chitosan. Biomaterials, 2000. 21(11): p. 1115-1119. 35. Chen, S.C., et al., A novel pH-sensitive hydrogel composed of N,O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. Journal of Controlled Release, 2004. 96(2): p. 285-300. 36. Sakiyama, T., et al., Preparation of polyelectrolyte complex gel from chitosan and k-car-rageenan and its pH sensitivity swelling. Journal of Applied Polymer Science, 1993. 50(11): p. 2021-2025. 37. Bronsted, J., et al., Hydrogels for site specific oral drug delivery synthesis and characterization. Biomaterials, 1991. 12(6): p.584-592. 38. Moor, C.P.D., et al., Long term structural changes in pH-sensitive hydrogels. Biomaterials, 1991. 12(9): p. 836-840. 39. Apocella, A., et al., Poly(ethylene oxide) and different molecular weight PEO blends as monolithic devices for drug release. Biomaterials, 1993. 14(2): p. 83-90. 40. Sawayanagi, Y., et al., Directly compressed tablets containing chitin and chitosan in addition to lactose or potato starch. Chemical & Pharmaceutical Bulletin, 1982. 30(8): p. 2935-2940. 41. Ritthidej, G.C., et al., Chitin and chitosan as disintigrants in paracetamol tablets. Drug Development and Industrial Pharmacy, 1994. 20(13): p. 2019 -2134. 42. Mi, F.L., et al., Chitosan tablets for controlled drug release of theophylline: effect of polymer drug wet or dry blending and anionic–cationic inter polymer. Journal of Applied Polymer Science, 1997. 66(13): p. 2495-2505. 43. Peppas, N.A., et al., A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int. J. Pharm., 1989. 57(2): p. 169-172. 44. Kumar, V., et al., Effect of compressional force on the crystallinity of directly compressible cellulose excipients. International Journal of Pharmaceutics , 1999. 177(2): p. 173-182. 45. Langer, R., et al., Tissue engineering. Science, 1993. 260(5110): p.920-926. 46. Peppas, N.A., et al., New Challenges in Biomaterials. Science, 1994. 263(5154): p. 1715-1720. 47. Petite, H., et al., Tissue-engineered bone regeneration. Nature Biotechnology, 2000. 18(9): p. 959-963 48. Shanmugasundaram, N, et al., Collagen–chitosan polymeric scaffolds for the in vitro culture of human epidermoid carcinoma cells. Biomaterials, 2001. 22(14): p. 1943-1951. 49. Becker, T., et al., Calcium alginate gel: a biocompatible and mechanically stable polymer for endovascular embolization .Journal of Biomedical Materials Research, 2001. 54(1): p. 76-86. 50. Li, Z., et al., Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials, 2005. 26(18): p. 3919-3928 51. Wanyao, Xia, et al., Tissue engineering of cartilage with the use of chitosan-gelatin complex scaffolds. Journal of Biomedical Materials Research, 2004. 71 (2): p. 373-380 52. Arpornmaeklong, P., et al., Growth and differentiation of mouse osteoblasts on chitosan-collagen sponges. International Journal of Oral and Maxillofaical Surgery, 2007. 36(4): p. 328-337. 53. 林文源, “國立台灣大學食品科學研究所博士論文”1995. 54. Ueno, H., et al., Accelerating effects of chitosan for healing at early phase of experimental open wound in dogs. Biomaterials, 1999. 20(15): p. 1407-1414. 55. Ma, L., et al., Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials, 2003. 24(26): p. 4833-4841. 56. Yannas, I.V., et al., Design of an artificial skin. I. Basic design principles. Journal of Biomedical Materials Research, 1980. 14(1): p. 65-81. 57. Mi, F.L., et al., Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials, 2001. 22(2): p.165-173. 58. Matsuda, K., et al., Re-freeze dried bilayer artificial skin. Biomaterials, 1993. 14(13): p. 1030-1035.. 59. Ueno, H, et al., Topical formulations and wound healing applications of chitosan. Advance Drug Delivery Reviews, 2001. 52(2): p. 105-115. 60. Mizuno, K., et al., Effect of chitosan film containing basic fibroblast growth factor on wound healing in genetically diabetic mice. Journal of Biomedical Materials Research, 2003. 64(1): p. 177-181. 61. Denkbas, E.B., et al., EGF loaded chitosan sponges as wound dressing material. Journal of Bioactive and Compatible Polymers, 2003. 18(3): p. 177-190. 62. Obara, K., et al., Photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2 stimulates wound healing in healing-impaired db/db mice. Biomaterials, 2003. 24(20): p. 3437-3444. 63. Kojima, K., et al., Effects of chitin and chitosan on collagen synthesis in wound healing. Journal of Veterinary Medical Science, 2004. 66(12): p. 1595-1598. 64. Wang, L., et al., Chitosan-alginate PEC membrane as a wound dressing: Assessment of incisional wound healing. Journal of Biomedical Materials Research, 2002. 63(5): p. 610-618. 65. Choi, YS, et al., Studies on gelatin-based sponges. Part III. Journal of Materials Science-Materials in Medicine, 2001. 12(1): p. 67-73. 66. Tucci, M.G., et al., Chitosan and gelatin as engineered dressing for wound repair. Journal of Bioactive and Compatible Polymers, 2001. 16(2): p. 145-157 67. Yeo, J.H., et al., The effects of Pva/chitosan/fibroin (PCF)-blended spongy sheets on wound healing in rats. Biological & Pharmaceutical Bulletin, 2000. 23(10): p. 1220-1223. 68. Kweon, D.K., et al., Preparation of water-soluble chitosan/heparin complex and its application as wound healing accelerator. Biomaterials, 2003. 24(9): p. 1595-1601 69. Degim, Z, et al., An investigation on skin wound healing in mice with a taurine-chitosan gel formulation. Amino. Acids, 2002. 22(2): p. 187-198. 70. Ma, L., et al., Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials, 2003. 24(26): p. 4833-4841. 71. Ong, S.Y., et al., Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials, 2008. 29(32): p. 4323-4332. 72. Muzzarelli, R., et al., Stimulatory effect on bone formation exerted by a modified chitosan. Biomaterials, 1994. 15(13): p. 1075-1081. 73. Narayan, R., Starch based plastics in polymer from biomaterials. Pergamon Press, New Jersey, 1991 74. Ballantyne, B., et al., Toxicological, medical and industrial hygiene aspects of glutaraldehyde with particular reference to its biocidal use in cold sterilization procedures. Journal of Applied Toxicol., 2001. 21(2): p. 131–51. 75. Vanwachem, P.B., et al., Biocompatibility and issue regenerating capacity of cross-linked dermal sheep collagen. Journal of Biomedical Materials Research, 1994. 28(3): p.353–63. 76. Olde, Damink L.H.H., et al., Cross-linking of dermal sheep collagen using a water-soluble carbodiimide. Biomaterials,1974. 17(8): p.765 -773 77. Buttafoco, L., et al., Electrospinning of collagen and elastin for tissue engineering applications. Biomaterials, 2006. 27: p.724–734 78. Wang, X.H., et al., Crosslinked collagen/chitosan matrix for artificial livers. Biomaterials, 2003. 24: p. 3213–3220 79. Mao, J.S., et al., The properties of chitosan–gelatin membranes and scaffolds modified with hyaluronic acid by different methods. Biomaterials, 2003. 24: p. 1621–1629 80. Deng, Y., et al., Preparation and characterization of hyaluronan/chitosan scaffold crosslinked by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide. Polymer International, 2007. 56(6): p. 738–745. 81. Richard, A., et al., Poly(glutamic acid) for biomedical applications. Critical Reviews in Biotechnology, 2001. 21(4): p. 219-232. 82. Iwata, H., et al., A novel surgical glue composed of gelatin and N-hydroxysuccinimide activated poly(L-glutamic acid): Part 1. Synthesis of activated poly(L-glutamic acid) and its gelation with gelatin. Biomaterials, 1998. 19(20): p.1869-1876. 83. Li, C., et al., Tumor irradiation enhances the tumor-specific distribution of poly(L-glutamic acid)-conjugated paclitaxel and its antitumor efficacy. Clinical Cancer Research, 2000. 6(7): p. 2829-2834. 84. Otani, Y., et al., Sealing effect of rapidly curable gelatin-poly (L-glutamic acid)hydrogel glue on lung air leak. Annals of Thoracic Surgery, 1999. 67(4): p. 922-926. 85. Richard, A., et al., Poly(glutamic acid) for biomedical applications. Critical Reviews in Biotechnology, 2001. 21(4): p. 219-232 86. Delhomme, C., et al., Succinic acid from renewable resources as a C-4 building-block chemical-a review of the catalytic possibilities in aqueous media. Green Chemistry, 2009. 11(1): p.13-26 87. Sibold, N., et al., Montmorillonite for clay-polymer nanocomposites: Intercalation of tailored compounds based on succinic anhydride, acid and acid salt derivatives - a review. Applied Clay Science, 2007. 38(1-2): p. 130-138 88. Harari, J., et al., Surgical complications and wound healing in the small animal practice. Philadelphia, Saunders Press, 1993. 89. Harari, J., et al., Molecular inhibition of angiogenesis and metastatic potential in human squamous cell carcinomas after epidermal growth factor receptor blockade. Molecular Cancer Therapeutics. 2002.1(7):507-514. 90. Kanzler, M., et al., Basic mechanisms in the healing cutaneous wound. Journal of Derma tologic Surgery and Oncology, 1986. 12(11): p. 1156-1164.. 91. Bailey, A.J., et al., Changes in the nature of the collagen during development and resorption of granulation tissue. Biochemica ET Biophysica Acta, 1973. 328(2): p. 383-390. 92. Tangsadthakun, C., et al., The influence of molecular weight of chitosan on the physical and biological properties of collagen/chitosan scaffolds. Journal of Biomaterials-Science Polymer Edition, 2007. 18(2): p. 147-163. 93. Adekogbe, I., et al., Fabrication and characterization of DTBP-crosslinked chitosan scaffolds for skin tissue engineering. Biomaterials, 2005. 26(35): p. 7241-7250. 94. Zhao, L., et al., Radiation synthesis and characteristic of the hydrogels based on carboxymethylated chitin derivatives. Carbohydrate Polymers, 2003. 51(2): p. 169-175. 95. Ishihara, M., et al., Acceleration of wound contraction and healing with a photocrosslinkable chitosan hydrogel. Wound Repair and Regeneration, 2001. 9(6): p. 513-521. 96. Liu, XF, et al., Antibacterial Action of Chitosan and Carboxymethylated Chitosan. Journal of Applied Polymer Science, 2001. 79(7): p. 1324-1335 97. Qiaoling, H., et al., Fibronectin involvement in granulation tissue and wound healing in rabbits. Journal of Histochemistry & Cytochemsitry, 1982. 30(4): p. 351-358. 98. Zheng, L.Y., et al., Study on antimicrobial activity of chitosan with different molecular weights. Carbohydrate Polymers, 2003. 54(4): p. 527-530 99. James, W., et al., Andrews' Diseases of the Skin: Clinical Dermatology. Philadelphia, Saunders Press, 2005 100. Baum, J.L., et al., Source of the fibroblast in central corneal wound healing. Archives Ophthalmology, 1971. 85(4): p. 473-477. 101. Cohen, I.K., et al., Onset and localization of collagen synthesis during wound healing in open rat skin wounds. Proceedings of Society Experimental Biology and Medicine, 1979. 160(4): p. 458-462. 102. Howling, G.I., et al., The effect of chitin and chitosan on the proliferation of human skin fibroblasts and keratinocytes in vitro. Biomaterials, 2001. 22(22): p. 2959-2966. 103. Repesh, L.A., et al., Fibronectin involvement in granulation tissue and wound healing in rabbits. Journal of Histochemistry & Cytochemsitry, 1982. 30(4): p. 351-358. 104. Singer, A.J., et al., Cutaneous wound healing. New England Journal of Medicine, 1999. 341(10): p. 738-746. 105. Azad, A.K., et al., Chitosan membrane as a wound-healing dressing: characterization and clinical application. Journal of Biomedical Materials Research, 2004. 69(2): p. 216-222. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22678 | - |
| dc.description.abstract | 幾丁聚醣(chitosan)為極具發展潛力的生醫材料,近年來已被廣泛應用於骨骼組織修復、藥物釋放系統以及創傷敷料等方面。幾丁聚醣其具有良好的生物性質,例如生物相容性、生物降解性以及抗菌性,且幾丁聚醣對於血液有促進凝結止血的效果。然而幾丁聚醣的低機械性質和快降解速率均限制其應用範圍,特別在具有溶菌 | zh_TW |
| dc.description.abstract | Chitosan is a potential material for biomedical applications. Recently, it is widely applied in bone tissue regeneration, drug delivery systems and wound dressings. Chitosan has outstanding biological properties, including biocompatible, biodegradable and antibacterial ability. Moreover, chitosan has hemostatic ability for promoting blood to coagulate together. However, the applications of chitosan are limited for its low mechanical properties and rapid degradation trend, especially in the environment containing lysozyme. Chitosan existing in acid environment becomes a cationic polyelectrolyte due to its amine group, it can easily form polyelectrolyte complexes with other anionic polyelectrolytes and growth factors, or form crosslink structure with carboxylic group by composing amide bond. Through this strategy, the properties of chitosan can be modified and enhanced.
In this research, in order to enhance the mechanical properties and to ease the biodegradation rate, the glutamic acid, succinic acid and succinic anhydride are applied to form crosslink structure with chitosan separately, with the repeating unit ratio of 80:20 to 50:50. Besides, this study investigates physicochemical characterization and biological properties of the crosslinked hydrogels. Via the implant study, animal test was conducted to evaluate the possibility that crosslinked hydrogels could be a potential wound dressing material. Results of wound closure and histological tissue observation showed that chitosan/diacid crosslinked hydrogels could accelerate the process of wound healing and tissue regeneration. The study reveals chitosan could suppress the infiltration of inflammatory cells and accelerate fibroblast proliferation while the diaicds could enhance epithelial migration. Thus, chitosan/diacid crosslinked hydrogels could be potential materials for wound dressing applications. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:24:22Z (GMT). No. of bitstreams: 1 ntu-99-R97549025-1.pdf: 3350275 bytes, checksum: 3656d9234e2908a6636aa63f717226eb (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 中文摘要 I
Abstract Ⅱ 目錄 Ⅳ 表索引 VII 圖索引 VIII 第1章 簡介 1 第2章 文獻回顧 2 2-1 幾丁質之簡介 2 2-2 幾丁質之應用 3 2-3 幾丁聚醣之簡介 5 2-4 幾丁聚醣之應用 6 2-4-1 幾丁聚醣於廢水處理之應用 7 2-4-2 幾丁聚醣於藥物釋放之應用 8 2-4-3 幾丁聚醣於組織工程之應用 11 2-4-4 幾丁聚醣於創傷敷料之應用 14 2-4-5 幾丁聚醣於其他方面之應用 16 2-5 幾丁聚醣交聯系統之簡介 17 2-5-1 EDC / NHS 交聯系統之簡介 19 2-6 雙官能基酸之簡介 20 2-6-1 麩胺酸之簡介 20 2-6-2 琥珀酸之簡介 22 2-6-3 琥珀酸酐之簡介 22 2-7 皮膚構造之簡介 22 2-8 傷口癒合過程機制 23 第3章 實驗藥品與實驗儀器 26 3-1 實驗藥品 26 3-2 實驗儀器 29 第4章 實驗方法 32 實驗流程圖 32 4-1 幾丁聚醣/雙官能基酸交聯水膠製備方法 33 4-2 材料性質測試 34 4-2-1 傅立葉轉換紅外線光譜儀 34 4-2-2 膨潤比 34 4-2-3 壓縮模數 34 4-2-4 接觸角儀 34 4-2-5 熱重分析儀 35 4-2-6 微差掃瞄卡計儀 35 4-2-7 X-ray繞射儀 35 4-3 生物性質測試 35 4-3-1 生物降解性測試 35 4-3-2 細胞活性測試 36 4-3-3 抗菌測試 36 4-4 動物實驗 37 4-4-1 切傷實驗 37 4-4-2 燙傷實驗 37 4-4-3 病理組織切片觀察 38 第5章 結果與討論 39 5-1 材料性質測試 39 5-1-1 傅立葉轉換紅外線光譜分析 39 5-1-2 膨潤比分析 39 5-1-3 壓縮模數分析 40 5-1-4 接觸角分析 40 5-1-5 熱性質分析 40 5-1-5-1 熱重分析 40 5-1-5-2 微差掃瞄卡計分析 41 5-1-6 X-ray繞射分析 42 5-2 生物性質測試 42 5-2-1 生物降解性測試分析 42 5-2-2 細胞活性測試分析 42 5-2-3 抗菌測試分析 43 5-3 動物實驗 43 5-3-1 切傷動物實驗 43 5-3-1-1 正常皮膚病理組織切片觀察 44 5-3-1-2 切傷實驗病理組織切片觀察 44 5-3-2 燙傷動物實驗 46 5-3-2-1 燙傷傷口癒合情形觀察 47 5-3-2-2 燙傷實驗病理組織切片觀察 47 第6章 結論 49 參考文獻 50 | |
| dc.language.iso | zh-TW | |
| dc.subject | 創傷敷料 | zh_TW |
| dc.subject | 幾丁聚醣 | zh_TW |
| dc.subject | 雙官能基酸 | zh_TW |
| dc.subject | 交聯 | zh_TW |
| dc.subject | 水膠 | zh_TW |
| dc.subject | chitosan | en |
| dc.subject | wound dressing | en |
| dc.subject | hydrogel | en |
| dc.subject | crosslinked | en |
| dc.subject | diacid | en |
| dc.title | 幾丁聚醣/雙官能基酸交聯水膠於皮膚創傷敷料 | zh_TW |
| dc.title | Chitosan/Diacid Crosslinked Hydrogels for Skin Wound Dressing | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謝國煌(Kuo-Huang Hsieh),吳銘芳(Ming-Fang Wu) | |
| dc.subject.keyword | 幾丁聚醣,雙官能基酸,交聯,水膠,創傷敷料, | zh_TW |
| dc.subject.keyword | chitosan,diacid,crosslinked,hydrogel,wound dressing, | en |
| dc.relation.page | 84 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2010-06-22 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 3.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
