Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22118
Title: 全基因組選拔訓練族群之決定
Training set determination for genomic selection
Authors: Jen-Hsiang Ou
歐任翔
Advisor: 廖振鐸
Keyword: 基因組育種值,基因組預測,植物育種,預測準確性,單一核?酸多型性分子標記,
GEBV,genomic prediction,plant breeding,prediction accuracy,SNP marker,
Publication Year : 2018
Degree: 碩士
Abstract: 在面對一群已知基因型而尚未做外表型調查的候選族群時,我們提出了一個有效的演算法以幫助我們由候選族群中選擇最佳的次族群作為訓練族群(training set),這些被選中的訓練族群會被調查外表型資料並以其基因型和表現型資料建立全基因組選拔(genomic selection, GS) 模型。在本篇研究中,我們考慮全基因組迴歸模式(whole-genome regression model),並以脊迴歸(ridge regression) 來估計GS 模型中分子標記的效應,所配適的GS 模型在育種中會接著被用於計算只有基因型資料之測試族群的育種價估計值(genomic estimated breeding values, GEBV),我們提出一個新的判斷準則用於決定所需的訓練族群,這個準則是由GEBV 與真實外表型值的皮爾生相關係數(Pearson’s correlation coefficient) 所發展而來,在本篇研究中我們使用R 語言來分析一組水稻的資料,由結果顯示,使用我們提出的演算法所選擇的訓練族群相較於隨機選擇訓練族群能夠使所配適的模型具有更高的預測準確性。
For a given candidate set of individuals which have been genotyped but not phenotyped, we develop a highly efficient algorithm to determine an optimal subset from the candidate set. The chosen subset serves as a training set to be phenotyped, and then a genomic selection (GS) model is built based on its resulting phenotype and genotype data. In this study, we typically consider
the whole-genome regression model, and adopt ridge regression estimation for marker effects in the GS model. The resulting GS model is then employed to predict genomic estimated breeding values (GEBVs) for a given test set of individuals which have been genotyped only. We propose a new optimality criterion to determine the required training set, which is directly derived from
Pearson’s correlation between the GEBVs and phenotypic values of the test set. Pearson’s correlation is the standard measure for prediction accuracy of a GS model. We implement our training set determination algorithm in R language, and illustrate it with a rice genome data set. It is shown that the training set generated from our algorithm can usually achieve a significantly
improved prediction accuracy in comparison with a randomly selected training set.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22118
DOI: 10.6342/NTU201802290
Fulltext Rights: 未授權
Appears in Collections:農藝學系

Files in This Item:
File SizeFormat 
ntu-107-1.pdf
  Restricted Access
6.73 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved