請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21028完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊台鴻(Tai-Horng Young) | |
| dc.contributor.author | Hunh-Shiuan Lin | en |
| dc.contributor.author | 林弘軒 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:16:27Z | - |
| dc.date.copyright | 2017-02-16 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2017-01-25 | |
| dc.identifier.citation | 1. Bentley, J. and A. Foster, Multidisciplinary management of the diabetic foot ulcer. British journal of community nursing, 2007. 12(12).
2. Werner, S. and R. Grose, Regulation of wound healing by growth factors and cytokines. Physiological reviews, 2003. 83(3): p. 835-870. 3. Mester, E., et al., Effect of laser rays on wound healing. The American Journal of Surgery, 1971. 122(4): p. 532-535. 4. Armstrong, D.G., L.A. Lavery, and D.F.S. Consortium, Negative pressure wound therapy after partial diabetic foot amputation: a multicentre, randomised controlled trial. The Lancet, 2005. 366(9498): p. 1704-1710. 5. Wu, Y., et al., Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem cells, 2007. 25(10): p. 2648-2659. 6. Lin, Y.-C., et al., Evaluation of a multi-layer adipose-derived stem cell sheet in a full-thickness wound healing model. Acta Biomaterialia, 2013. 9(2): p. 5243-5250. 7. Branski, L.K., et al., A review of gene and stem cell therapy in cutaneous wound healing. Burns, 2009. 35(2): p. 171-180. 8. Walter, M., et al., Mesenchymal stem cell-conditioned medium accelerates skin wound healing: an in vitro study of fibroblast and keratinocyte scratch assays. Experimental cell research, 2010. 316(7): p. 1271-1281. 9. Sen, C.K., et al., Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair and Regeneration, 2009. 17(6): p. 763-771. 10. Jones, I., L. Currie, and R. Martin, A guide to biological skin substitutes. British journal of plastic surgery, 2002. 55(3): p. 185-193. 11. Madonna, R., Y.-J. Geng, and R. De Caterina, Adipose tissue-derived stem cells characterization and potential for cardiovascular repair. Arteriosclerosis, thrombosis, and vascular biology, 2009. 29(11): p. 1723-1729. 12. Heydarkhan-Hagvall, S., et al., Human adipose stem cells: a potential cell source for cardiovascular tissue engineering. Cells Tissues Organs, 2008. 187(4): p. 263-274. 13. Gao, J., et al., The use of chitosan based hydrogel for enhancing the therapeutic benefits of adipose-derived MSCs for acute kidney injury. Biomaterials, 2012. 33(14): p. 3673-3681. 14. Liu, Z., et al., The influence of chitosan hydrogel on stem cell engraftment, survival and homing in the ischemic myocardial microenvironment. Biomaterials, 2012. 33(11): p. 3093-3106. 15. Dimmeler, S., J. Burchfield, and A.M. Zeiher, Cell-based therapy of myocardial infarction. Arteriosclerosis, thrombosis, and vascular biology, 2008. 28(2): p. 208-216. 16. Verseijden, F., et al., Prevascular structures promote vascularization in engineered human adipose tissue constructs upon implantation. Cell transplantation, 2010. 19(8): p. 1007-1020. 17. Verseijden, F., et al., Adult Human Bone Marrow–and Adipose Tissue–Derived Stromal Cells Support the Formation of Prevascular-like Structures from Endothelial Cells In Vitro. Tissue Engineering Part A, 2009. 16(1): p. 101-114. 18. Ng, K.W. and D.W. Hutmacher, Reduced contraction of skin equivalent engineered using cell sheets cultured in 3D matrices. Biomaterials, 2006. 27(26): p. 4591-4598. 19. LAPLANTE, A.F., et al., Mechanisms of wound reepithelialization: hints from a tissue-engineered reconstructed skin to long-standing questions. The FASEB Journal, 2001. 15(13): p. 2377-2389. 20. Sasagawa, T., et al., Design of prevascularized three-dimensional cell-dense tissues using a cell sheet stacking manipulation technology. Biomaterials, 2010. 31(7): p. 1646-1654. 21. Sekiya, S., et al., Bioengineered cardiac cell sheet grafts have intrinsic angiogenic potential. Biochemical and biophysical research communications, 2006. 341(2): p. 573-582. 22. Matsubayashi, Y., et al., ERK activation propagates in epithelial cell sheets and regulates their migration during wound healing. Current Biology, 2004. 14(8): p. 731-735. 23. Obokata, H., et al., Reproducible subcutaneous transplantation of cell sheets into recipient mice. Nature protocols, 2011. 6(7): p. 1053-1059. 24. Martin, P.M., et al., Enhancing repair of full-thickness excisional wounds in a murine model: Impact of tissue-engineered biological dressings featuring human differentiated adipocytes. Acta biomaterialia, 2015. 22: p. 39-49. 25. Garcia Cruz, D.M., et al., Blending polysaccharides with biodegradable polymers. II. Structure and biological response of chitosan/polycaprolactone blends. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2008. 87(2): p. 544-554. 26. No, H.K., et al., Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. International journal of food microbiology, 2002. 74(1): p. 65-72. 27. Francesko, A. and T. Tzanov, Chitin, Chitosan and Derivatives for Wound Healing and Tissue Engineering. Adv Biochem Eng Biotechnol, 2010. 28. Jayakumar, R., et al., Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv, 2011. 29(3): p. 322-37. 29. Chen, Y.-H., et al., Control of cell attachment on pH-responsive chitosan surface by precise adjustment of medium pH. Biomaterials, 2012. 33(5): p. 1336-1342. 30. Cheng, N.C., et al., Efficient transfer of human adipose‐derived stem cells by chitosan/gelatin blend films. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2012. 100(5): p. 1369-1377. 31. Ribeiro, F.d.A.Q., et al., Clinical and histological healing of surgical wounds treated with mitomycin C. The Laryngoscope, 2004. 114(1): p. 148-152. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21028 | - |
| dc.description.abstract | In this study, we used a composite biomaterial composed of adipose-derived stem cells (ADSC) and gelatin/chitosn film (C/G film) with ascorbic acid 2-phosphate A2P to promote the wound healing process.
The C / G film was prepared from chitosan and gelatin in 0.4% AcOH at a ratio of 3 to 7, and was dried at room temperature, 37, and 60 ° C. And then, the dried C / G films were neutralized by 0.1, 0.5, and 1N NaOH. The production of C/G film at 37℃ and neutralized by 1N NaOH can get the optimum condition. The ADSCs were cultured on the C / G film for 5 days to form the cell sheet, and the gelatin from C/G film was released by 74.6% (measured by bicinchoninic acid assay).The expression of type 1 collagen from the ADSCs on C/G film was more than on TCPS at 7 day (measured by western blot). The animal experiment shows that the wound of B6 mice covered with cell sheet can not be speeded up the healing, but reduces the formation of granulation tissue obviously. However, there was no significant difference in the Lanyu pig model. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:16:27Z (GMT). No. of bitstreams: 1 ntu-105-R03548037-1.pdf: 2956245 bytes, checksum: 04620bec3a6b919ea85eda735717c2ca (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
中文摘要 ii 英文摘要 iii 第一章 緒論 1 第二章 文獻回顧 2 2.1 脂肪幹細胞(Adipose derived stem cell, ASC) 2 2.2 脂肪幹細胞促進血管新生機制 3 2.3 幹細胞片(Cell sheet) 4 2.4 幾丁聚醣(Chitosan) 6 2.5 明膠(gelatin) 7 2.6 幾丁聚醣與明膠混摻(C/G) 7 第三章 實驗材料與方法 8 3.1 實驗理論與架構 8 3.2 試劑配置 10 3.3 實驗儀器 11 3.4 實驗方法 14 3.4.1 脂肪幹細胞培養 14 3.4.2 幾丁聚醣溶液配製 14 3.4.3 明膠水溶液配製 15 3.4.4 幾丁聚醣與明膠薄膜製備(C/G)膜 15 3.4.5 幾丁聚醣與明膠薄膜培養脂肪幹細胞片 15 3.4.6 TCPS培養脂肪幹細胞片 16 3.4.7 細胞活性評估(Alamar blue assay) 16 3.4.8 明膠析出評估(BCA assay) 17 3.4.9西方墨點法(Western blot) 18 3.5.0 B6小鼠傷口修復 19 3.5.1蘭嶼豬傷口修復 20 3.5.2 H&E染色(hematoxylin and eosin stain、H&E stain) 21 第四章 實驗結果 23 4.1酸鹼中和對(C/G)膜的影響 23 4.2在不同溫度去除溶劑(C/G)膜的影響 23 4.3明膠析出情形 23 4.4比較(C/G)膜與TCPS培養脂肪幹細胞片之差異 24 4.4.1較高細胞密度 24 4.4.2 較低細胞密度 24 4.4.3不同細胞密度在(C/G)上培養 25 4.4.4 Alamar blue測量(C/G)膜上幹細胞的細胞活性 25 4.4.5西方點墨法(Western blot) 26 4.5 B6小鼠動物實驗 26 4.5.1 B6小鼠在不同天期傷口的外觀的變化 26 4.5.2 B6小鼠在不同天期傷口面積的變化 27 4.5.3 B6小鼠各組別肉芽組織增生情況 27 4.6豬隻動物實驗(蘭嶼豬) 27 4.6.1豬隻(蘭嶼豬)在不同天期傷口的外觀的變化 28 4.6.2豬隻(蘭嶼豬)在不同天期傷口面積的變化 28 4.6.2蘭嶼豬各組別肉芽組織增生情況 28 第五章 討論 29 5.1酸鹼中和對(C/G)膜的影響 29 5.2不同細胞密度在(C/G)上培養 29 5.3 Alamar blue測量(C/G)膜上幹細胞的細胞活性 31 5.4 比較(C/G)膜與TCPS養脂肪幹細胞片之差異 32 5.5西方墨點法(Western blot) 32 5.6 B6小鼠動物實驗結果 33 5.7蘭嶼豬動物實驗結果 33 第六章 結論 34 第七章 圖表 35 第八章 文獻回顧 47 | |
| dc.language.iso | zh-TW | |
| dc.subject | 蘭嶼豬 | zh_TW |
| dc.subject | 幾丁聚醣 | zh_TW |
| dc.subject | 脂肪幹細胞 | zh_TW |
| dc.subject | 傷口修復 | zh_TW |
| dc.subject | 複合式薄膜 | zh_TW |
| dc.subject | adipose-derived stem cells | en |
| dc.subject | chitosan | en |
| dc.subject | Lanyu pig | en |
| dc.subject | composite material film | en |
| dc.subject | wound healing | en |
| dc.title | 發展脂肪幹細胞片於幾丁聚醣-明膠薄膜並應用於傷口癒合 | zh_TW |
| dc.title | Development of the adipose-derived stem cell sheets on chitosan-gelatin film for wound healing | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 鄭乃禎(Nai-Chen Cheng) | |
| dc.contributor.oralexamcommittee | 戴浩志(Hao-Chih Tai),胡威文(hu-wei wen) | |
| dc.subject.keyword | 幾丁聚醣,脂肪幹細胞,傷口修復,複合式薄膜,蘭嶼豬, | zh_TW |
| dc.subject.keyword | chitosan,adipose-derived stem cells,wound healing,composite material film,Lanyu pig, | en |
| dc.relation.page | 49 | |
| dc.identifier.doi | 10.6342/NTU201700229 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2017-01-25 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 2.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
