Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20531
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林文貞
dc.contributor.authorPu-Sheng Weien
dc.contributor.author魏溥陞zh_TW
dc.date.accessioned2021-06-08T02:52:05Z-
dc.date.copyright2017-09-08
dc.date.issued2017
dc.date.submitted2017-08-14
dc.identifier.citationAggarwal BB, Shishodia S, Takada Y, Banerjee S, Newman RA, Bueso-Ramos CE, et al. Curcumin suppresses the paclitaxel-induced nuclear factor-kappaB pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice. Clin Cancer Res. 2005;11(20):7490-8.
Alai M, Lin WJ. A novel once daily microparticulate dosage form comprising lansoprazole to prevent nocturnal acid breakthrough in the case of gastro-esophageal reflux disease: preparation, pharmacokinetic and pharmacodynamic evaluation. J Microencapsul. 2013;30(6):519-29.
Aldayel AM, Naguib YW, O'Mary HL, Li X, Niu M, Ruwona TB, et al. Acid-Sensitive Sheddable PEGylated PLGA Nanoparticles Increase the Delivery of TNF-α siRNA in Chronic Inflammation Sites. Molecular Therapy Nucleic Acids. 2016;5(7):e340.
Ameringer T, Fransen P, Bean P, Johnson G, Pereira S, Evans RA, et al. Polymer coatings that display specific biological signals while preventing nonspecific interactions. J Biomed Mater Res A. 2011;100A(2):370-9.
Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4(6):807-18.
Anselmo AC, Mitragotri S. A Review of Clinical Translation of Inorganic Nanoparticles. The AAPS Journal. 2015;17(5):1041-54.
Bahrami B, Mohammadnia-Afrouzi M, Bakhshaei P, Yazdani Y, Ghalamfarsa G, Yousefi M, et al. Folate-conjugated nanoparticles as a potent therapeutic approach in targeted cancer therapy. Tumour Biol. 2015;36(8):5727-42.
Bayet-Robert M, Kwiatowski F, Leheurteur M, Gachon F, Planchat E, Abrial C, et al. Phase I dose escalation trial of docetaxel plus curcumin in patients with advanced and metastatic breast cancer. Cancer Biology & Therapy. 2014;9(1):8-14.
Bechara C, Sagan S. Cell-penetrating peptides: 20 years later, where do we stand? FEBS Letters. 2013;587(12):1693-702.
Bechara C, Sagan S. Cell-penetrating peptides: 20years later, where do we stand? FEBS Letters. 2013;587(12):1693-702.
Bentires-Alj M, Barbu V, Fillet M, Chariot A, Relic B, Jacobs N, et al. NF-[kappa]B transcription factor induces drug resistance through MDR1 expression in cancer cells. Oncogene. 2003;22(1):90-7.
Betancourt T, Byrne JD, Sunaryo N, Crowder SW, Kadapakkam M, Patel S, et al. PEGylation strategies for active targeting of PLA/PLGA nanoparticles. J Biomed Mater Res A. 2009;91(1):263-76.
Brooks H, Lebleu B, Vivès E. Tat peptide-mediated cellular delivery: back to basics. Advanced Drug Delivery Reviews. 2005;57(4):559-77.
Cabrespine-Faugeras A, Bayet-Robert M, Bay JO, Chollet P, Barthomeuf C. Possible benefits of curcumin regimen in combination with taxane chemotherapy for hormone-refractory prostate cancer treatment. Nutr Cancer. 2010;62(2):148-53.
Chang J, Jallouli Y, Kroubi M, Yuan X-b, Feng W, Kang C-s, et al. Characterization of endocytosis of transferrin-coated PLGA nanoparticles by the blood–brain barrier. International Journal of Pharmaceutics. 2009;379(2):285-92.
Chao TY, Raines RT. Mechanism of ribonuclease A endocytosis: analogies to cell-penetrating peptides. Biochemistry. 2011;50(39):8374-82.
Chen LC, Chen YC, Su CY, Wong WP, Sheu MT, Ho HO. Development and Characterization of Lecithin-based Self-assembling Mixed Polymeric Micellar (saMPMs) Drug Delivery Systems for Curcumin. Sci Rep. 2016;6:37122.
Cheng AL, Hsu CH, Lin JK, Hsu MM, Ho YF, Shen TS, et al. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res. 2001;21(4b):2895-900.
Cheng CJ, Saltzman WM. Enhanced siRNA delivery into cells by exploiting the synergy between targeting ligands and cell-penetrating peptides. Biomaterials. 2011;32(26):6194-203.
Cheng J, Teply BA, Sherifi I, Sung J, Luther G, Gu FX, et al. Formulation of Functionalized PLGA-PEG Nanoparticles for In Vivo Targeted Drug Delivery. Biomaterials. 2007;28(5):869-76.
Chu Y, Chen N, Yu H, Mu H, He B, Hua H, et al. Topical ocular delivery to laser-induced choroidal neovascularization by dual internalizing RGD and TAT peptide-modified nanoparticles. International Journal of Nanomedicine. 2017;12:1353-68.
Clawson C, Huang C-T, Futalan D, Martin Seible D, Saenz R, Larsson M, et al. Delivery of a peptide via poly(d,l-lactic-co-glycolic) acid nanoparticles enhances its dendritic cell–stimulatory capacity. Nanomedicine: Nanotechnology, Biology and Medicine. 2010;6(5):651-61.
Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123-33.
Dand N, Patel P, Ayre A, Kadam V. Polymeric micelles as a drug carrier for tumor targeting. Chronicles of Young Scientists. 2013;4(2):94-101.
Dash S, Murthy PN, Nath L, Chowdhury P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm. 2010;67(3):217-23.
De Jong WH, Borm PJA. Drug delivery and nanoparticles: Applications and hazards. International Journal of Nanomedicine. 2008;3(2):133-49.
Dinarvand R, Sepehri N, Manoochehri S, Rouhani H, Atyabi F. Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents. International Journal of Nanomedicine. 2011;6:877-95.
Domingo-Domenech J, Oliva C, Rovira A, Codony-Servat J, Bosch M, Filella X, et al. Interleukin 6, a nuclear factor-kappaB target, predicts resistance to docetaxel in hormone-independent prostate cancer and nuclear factor-kappaB inhibition by PS-1145 enhances docetaxel antitumor activity. Clin Cancer Res. 2006;12(18):5578-86.

Doolittle E, Peiris PM, Doron G, Goldberg A, Tucci S, Rao S, et al. Spatiotemporal Targeting of a Dual-Ligand Nanoparticle to Cancer Metastasis. ACS nano. 2015;9(8):8012-21.
Engels FK, Mathot RA, Verweij J. Alternative drug formulations of docetaxel: a review. Anticancer Drugs. 2007;18(2):95-103.
Epstein J, Sanderson IR, Macdonald TT. Curcumin as a therapeutic agent: the evidence from in vitro, animal and human studies. Br J Nutr. 2010;103(11):1545-57.
Fang J, Nakamura H, Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Advanced Drug Delivery Reviews. 2011;63(3):136-51.
Fasehee H, Dinarvand R, Ghavamzadeh A, Esfandyari-Manesh M, Moradian H, Faghihi S, et al. Delivery of disulfiram into breast cancer cells using folate-receptor-targeted PLGA-PEG nanoparticles: in vitro and in vivo investigations. Journal of Nanobiotechnology. 2016;14:32.
Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, et al. Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem. 2001;276(8):5836-40.
Gad A, Kydd J, Piel B, Rai P. Targeting Cancer using Polymeric Nanoparticle mediated Combination Chemotherapy. Int J Nanomed Nanosurg. 2016;2(3).
Gallego-Yerga L, Posadas I, de la Torre C, Ruiz-Almansa J, Sansone F, Ortiz Mellet C, et al. Docetaxel-Loaded Nanoparticles Assembled from β-Cyclodextrin/Calixarene Giant Surfactants: Physicochemical Properties and Cytotoxic Effect in Prostate Cancer and Glioblastoma Cells. Frontiers in Pharmacology. 2017;8(249).
Geng C, Li P, Chen X, Yuan G, Guo N, Liu H, et al. Comparison of the docetaxel concentration in human plasma measured with liquid chromatography-tandem mass spectrometry (LC-MS/MS) and a nanoparticle immunoassay and clinical applications of that assay. Biosci Trends. 2017;11(2):202-8.

Gullotti E, Yeo Y. Beyond the imaging: Limitations of cellular uptake study in the evaluation of nanoparticles. Journal of controlled release : official journal of the Controlled Release Society. 2012;164(2):170-6.
Guo Z, Peng H, Kang J, Sun D. Cell-penetrating peptides: Possible transduction mechanisms and therapeutic applications. Biomedical Reports. 2016;4(5):528-34.
Gupta SC, Patchva S, Aggarwal BB. Therapeutic Roles of Curcumin: Lessons Learned from Clinical Trials. The AAPS Journal. 2013;15(1):195-218.
Gutierres VO, Campos ML, Arcaro CA, Assis RP, Baldan-Cimatti HM, Peccinini RG, et al. Curcumin Pharmacokinetic and Pharmacodynamic Evidences in Streptozotocin-Diabetic Rats Support the Antidiabetic Activity to Be via Metabolite(s). Evidence-based Complementary and Alternative Medicine : eCAM. 2015;2015:678218.
Hanif M, Ranjha NM, Shoaib MH, Mudasser J, Yousuf RI, Khan A, et al. Preparation, characterization and release of verapamil hydrochloride from polycaprolactone/acrylic acid (PCL/AA) hydrogels. Pak J Pharm Sci. 2011;24(4):503-11.
Hatakeyama H, Akita H, Kogure K, Oishi M, Nagasaki Y, Kihira Y, et al. Development of a novel systemic gene delivery system for cancer therapy with a tumor-specific cleavable PEG-lipid. Gene Ther. 2006;14(1):68-77.
Hong JM, Park CS, Nam-Goong IS, Kim YS, Lee JC, Han MW, et al. Curcumin Enhances Docetaxel-Induced Apoptosis of 8505C Anaplastic Thyroid Carcinoma Cells. Endocrinology and Metabolism. 2014;29(1):54-61.
Hosseininasab S, Pashaei-Asl R, Khandaghi AA, Nasrabadi HT, Nejati-Koshki K, Akbarzadeh A, et al. Synthesis, characterization, and in vitro studies of PLGA-PEG nanoparticles for oral insulin delivery. Chem Biol Drug Des. 2014;84(3):307-15.
Jia F, Liu X, Li L, Mallapragada S, Narasimhan B, Wang Q. Multifunctional nanoparticles for targeted delivery of immune activating and cancer therapeutic agents. Journal of Controlled Release. 2013;172(3):1020-34.

Jones SW, Christison R, Bundell K, Voyce CJ, Brockbank SM, Newham P, et al. Characterisation of cell-penetrating peptide-mediated peptide delivery. Br J Pharmacol. 2005;145(8):1093-102.
Jones SW, Christison R, Bundell K, Voyce CJ, Brockbank SMV, Newham P, et al. Characterisation of cell-penetrating peptide-mediated peptide delivery. British Journal of Pharmacology. 2005;145(8):1093-102.
Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev. 2012;41(7):2971-3010.
Karin M, Mintz B. Receptor-mediated endocytosis of transferrin in developmentally totipotent mouse teratocarcinoma stem cells. J Biol Chem. 1981;256(7):3245-52.
Karunagaran D, Rashmi R, Kumar TR. Induction of apoptosis by curcumin and its implications for cancer therapy. Curr Cancer Drug Targets. 2005;5(2):117-29.
Kawamori T, Lubet R, Steele VE, Kelloff GJ, Kaskey RB, Rao CV, et al. Chemopreventive effect of curcumin, a naturally occurring anti-inflammatory agent, during the promotion/progression stages of colon cancer. Cancer Res. 1999;59(3):597-601.
Kenmotsu H, Tanigawara Y. Pharmacokinetics, dynamics and toxicity of docetaxel: Why the Japanese dose differs from the Western dose. Cancer Science. 2015;106(5):497-504.
Khalil NM, Nascimento TCFd, Casa DM, Dalmolin LF, Mattos ACd, Hoss I, et al. Pharmacokinetics of curcumin-loaded PLGA and PLGA–PEG blend nanoparticles after oral administration in rats. Colloids and Surfaces B: Biointerfaces. 2013;101 :353-60.
Kheiri Manjili H, Ghasemi P, Malvandi H, Mousavi MS, Attari E, Danafar H. Pharmacokinetics and in vivo delivery of curcumin by copolymeric mPEG-PCL micelles. European Journal of Pharmaceutics and Biopharmaceutics. 2017;116 :17-30.

Kolonin MG, Bover L, Sun J, Zurita AJ, Do KA, Lahdenranta J, et al. Ligand-directed surface profiling of human cancer cells with combinatorial peptide libraries. Cancer Res. 2006;66(1):34-40.
Kreuter J. Nanoparticles—a historical perspective. International Journal of Pharmaceutics. 2007;331(1):1-10.
Kristensen M, Birch D, Mørck Nielsen H. Applications and Challenges for Use of Cell-Penetrating Peptides as Delivery Vectors for Peptide and Protein Cargos. International Journal of Molecular Sciences. 2016;17(2):185.
LeAnn B. Norris, Zaina P. Qureshi, P. Brandon Bookstaver, Dennis W. Raisch, Oliver Sartor, Hao Chen, et al. Polysorbate 80 hypersensitivity reactions: a renewed call to action. Community Oncology. 2010;7(9):425-8.
Limtrakul P. Curcumin as chemosensitizer. Adv Exp Med Biol. 2007;595 :269-300.
Lin YG, Kunnumakkara AB, Nair A, Merritt WM, Han LY, Armaiz-Pena GN, et al. Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-kappaB pathway. Clin Cancer Res. 2007;13(11):3423-30.
Liu CW, Lin WJ. Polymeric nanoparticles conjugate a novel heptapeptide as an epidermal growth factor receptor-active targeting ligand for doxorubicin. International Journal of Nanomedicine. 2012;7 :4749-67.
Liu CW, Lin WJ. Using doxorubicin and siRNA-loaded heptapeptide-conjugated nanoparticles to enhance chemosensitization in epidermal growth factor receptor high-expressed breast cancer cells. J Drug Target. 2013;21(8):776-86.
Lyseng-Williamson KA, Fenton C. Docetaxel: a review of its use in metastatic breast cancer. Drugs. 2005;65(17):2513-31.
Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Advances in Enzyme Regulation. 2001;41(1):189-207.

Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. Journal of Controlled Release. 2000;65(1–2):271-84.
Mahmoudi M, Sant S, Wang B, Laurent S, Sen T. Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Advanced Drug Delivery Reviews. 2011;63(1–2):24-46.
Makadia HK, Siegel SJ. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers (Basel). 2011;3(3):1377-97.
Merkli A, Tabatabay C, Gurny R, Heller J. Biodegradable polymers for the controlled release of ocular drugs. Progress in Polymer Science. 1998;23(3):563-80.
Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopedic devices. Biomaterials. 2000;21(23):2335-46.
Milane L, Duan Z, Amiji M. Development of EGFR-targeted polymer blend nanocarriers for combination paclitaxel/lonidamine delivery to treat multi-drug resistance in human breast and ovarian tumor cells. Mol Pharm. 2011;8(1):185-203.
Munyendo WLL, Lv H, Benza-Ingoula H, Baraza LD, Zhou J. Cell Penetrating Peptides in the Delivery of Biopharmaceuticals. Biomolecules. 2012;2(2):187-202.
Noori Koopaei M, Khoshayand MR, Mostafavi SH, Amini M, Khorramizadeh MR, Jeddi Tehrani M, et al. Docetaxel Loaded PEG-PLGA Nanoparticles: Optimized Drug Loading, In-vitro Cytotoxicity and In-vivo Antitumor Effect. Iranian Journal of Pharmaceutical Research : IJPR. 2014;13(3):819-33.
Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, Maiello MR, et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene. 2006;366(1):2-16.
O'Neill AJ, Prencipe M, Dowling C, Fan Y, Mulrane L, Gallagher WM, et al. Characterisation and manipulation of docetaxel resistant prostate cancer cell lines. Molecular Cancer. 2011;10(1):126.

Otsuka H, Nagasaki Y, Kataoka K. PEGylated nanoparticles for biological and pharmaceutical applications. Advanced Drug Delivery Reviews. 2003;55(3):403-19.
Owens DE, 3rd, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307(1):93-102.
Paka GD, Ramassamy C. Optimization of Curcumin-Loaded PEG-PLGA Nanoparticles by GSH Functionalization: Investigation of the Internalization Pathway in Neuronal Cells. Mol Pharm. 2017;14(1):93-106.
Pelaz B, del Pino P, Maffre P, Hartmann R, Gallego M, Rivera-Fernandez S, et al. Surface Functionalization of Nanoparticles with Polyethylene Glycol: Effects on Protein Adsorption and Cellular Uptake. ACS Nano. 2015;9(7):6996-7008.
Peng H, Tang J, Zheng R, Guo G, Dong A, Wang Y, et al. Nuclear-Targeted Multifunctional Magnetic Nanoparticles for Photothermal Therapy. Adv Healthc Mater. 2017;6(7).
Pillai JJ, Thulasidasan AKT, Anto RJ, Devika NC, Ashwanikumar N, Kumar GSV. Curcumin entrapped folic acid conjugated PLGA-PEG nanoparticles exhibit enhanced anticancer activity by site specific delivery. RSC Advances. 2015;5(32):25518-24.
Prasad S, Tyagi AK, Aggarwal BB. Recent Developments in Delivery, Bioavailability, Absorption and Metabolism of Curcumin: the Golden Pigment from Golden Spice. Cancer Research and Treatment : Official Journal of Korean Cancer Association. 2014;46(1):2-18.
Quarta A, Curcio A, Kakwere H, Pellegrino T. Polymer coated inorganic nanoparticles: tailoring the nanocrystal surface for designing nanoprobes with biological implications. Nanoscale. 2012;4(11):3319-34.
Rafiei P, Haddadi A. Docetaxel-loaded PLGA and PLGA-PEG nanoparticles for intravenous application: pharmacokinetics and biodistribution profile. International Journal of Nanomedicine. 2017;12 :935-47.

Rafiei P, Michel D, Haddadi A. Application of a Rapid ESI-MS/MS Method for Quantitative Analysis of Docetaxel in Polymeric Matrices of PLGA and PLGA-PEG Nanoparticles through Direct Injection to Mass Spectrometer. American Journal of Analytical Chemistry. 2015;Vol.06 No.02:12.
Rizzuti M, Nizzardo M, Zanetta C, Ramirez A, Corti S. Therapeutic applications of the cell-penetrating HIV-1 Tat peptide. Drug Discov Today. 2015;20(1):76-85.
Romberg B, Hennink WE, Storm G. Sheddable coatings for long-circulating nanoparticles. Pharm Res. 2008;25(1):55-71.
Saez A, Guzman M, Molpeceres J, Aberturas MR. Freeze-drying of polycaprolactone and poly(D,L-lactic-glycolic) nanoparticles induce minor particle size changes affecting the oral pharmacokinetics of loaded drugs. Eur J Pharm Biopharm. 2000;50(3):379-87.
Sah H, Thoma LA, Desu HR, Sah E, Wood GC. Concepts and practices used to develop functional PLGA-based nanoparticulate systems. International Journal of Nanomedicine. 2013;8 :747-65.
Sahu BP, Hazarika H, Bharadwaj R, Loying P, Baishya R, Dash S, et al. Curcumin-docetaxel co-loaded nanosuspension for enhanced anti-breast cancer activity. Expert Opin Drug Deliv. 2016;13(8):1065-74.
Samadi N, Ghanbari P, Mohseni M, Tabasinezhad M, Sharifi S, Nazemieh H, et al. Combination therapy increases the efficacy of docetaxel, vinblastine and tamoxifen in cancer cells. J Cancer Res Ther. 2014;10(3):715-21.
Sanna V, Siddiqui IA, Sechi M, Mukhtar H. Resveratrol-loaded nanoparticles based on poly(epsilon-caprolactone) and poly(D,L-lactic-co-glycolic acid)-poly(ethylene glycol) blend for prostate cancer treatment. Mol Pharm. 2013;10(10):3871-81.
Sethi G, Sung B, Aggarwal BB. Nuclear factor-kappaB activation: from bench to bedside. Exp Biol Med (Maywood). 2008;233(1):21-31.
Shanmugam M, Rane G, Kanchi M, Arfuso F, Chinnathambi A, Zayed M, et al. The multifaceted Role of curcumin in cancer prevention and treatment. Molecules. 2015;20(2):2728.
Shevtsov MA, Nikolaev BP, Yakovleva LY, Marchenko YY, Dobrodumov AV, Mikhrina AL, et al. Superparamagnetic iron oxide nanoparticles conjugated with epidermal growth factor (SPION–EGF) for targeting brain tumors. International Journal of Nanomedicine. 2014;9:273-87.
Shukla P, Verma AK, Dewangan J, Rath SK, Mishra PR. Chitosan coated curcumin nanocrystals augment pharmacotherapy via improved pharmacokinetics and interplay of NF[small kappa]B, Keap1 and Nrf2 expression in Gram negative sepsis. RSC Advances. 2015;5(70):57006-20.
Sneh-Edri H, Likhtenshtein D, Stepensky D. Intracellular targeting of PLGA nanoparticles encapsulating antigenic peptide to the endoplasmic reticulum of dendritic cells and its effect on antigen cross-presentation in vitro. Mol Pharm. 2011;8(4):1266-75.
Song Z, Lu Y, Zhang X, Wang H, Han J, Dong C. Novel curcumin-loaded human serum albumin nanoparticles surface functionalized with folate: characterization and in vitro/vivo evaluation. Drug Des Devel Ther. 2016;10:2643-9.
Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. Journal of Controlled Release. 2001;70(1–2):1-20.
Stewart KM, Horton KL, Kelley SO. Cell-penetrating peptides as delivery vehicles for biology and medicine. Org Biomol Chem. 2008;6(13):2242-55.
Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Engl. 2014;53(46):12320-64.
Takara K, Hatakeyama H, Kibria G, Ohga N, Hida K, Harashima H. Size-controlled, dual-ligand modified liposomes that target the tumor vasculature show promise for use in drug-resistant cancer therapy. Journal of Controlled Release. 2012;162(1):225-32.
Tong X, Zhou J, Tan Y. Determination of paclitaxel in rat plasma by LC-MS-MS. J Chromatogr Sci. 2006;44(5):266-71.

Troselj KG, Kujundzic RN. Curcumin in combined cancer therapy. Curr Pharm Des. 2014;20(42):6682-96.
Vankayala R, Kuo C-L, Nuthalapati K, Chiang C-S, Hwang KC. Nucleus-Targeting Gold Nanoclusters for Simultaneous In Vivo Fluorescence Imaging, Gene Delivery, and NIR-Light Activated Photodynamic Therapy. Advanced Functional Materials. 2015;25(37):5934-45.
Vasconcelos A, Vega E, Perez Y, Gomara MJ, Garcia ML, Haro I. Conjugation of cell-penetrating peptides with poly(lactic-co-glycolic acid)-polyethylene glycol nanoparticles improves ocular drug delivery. Int J Nanomedicine. 2015;10:609-31.
Venishetty VK, Komuravelli R, Kuncha M, Sistla R, Diwan PV. Increased brain uptake of docetaxel and ketoconazole loaded folate-grafted solid lipid nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine. 2013;9(1):111-21.
Von Hoff DD, Mita MM, Ramanathan RK, Weiss GJ, Mita AC, LoRusso PM, et al. Phase I Study of PSMA-Targeted Docetaxel-Containing Nanoparticle BIND-014 in Patients with Advanced Solid Tumors. Clin Cancer Res. 2016;22(13):3157-63.
Wang H, Agarwal P, Zhao S, Xu RX, Yu J, Lu X, et al. Hyaluronic acid-decorated dual responsive nanoparticles of Pluronic F127, PLGA, and chitosan for targeted co-delivery of doxorubicin and irinotecan to eliminate cancer stem-like cells. Biomaterials. 2015;72:74-89.
Wang K, Zhang Y, Wang J, Yuan A, Sun M, Wu J, et al. Self-assembled IR780-loaded transferrin nanoparticles as an imaging, targeting and PDT/PTT agent for cancer therapy. Sci Rep. 2016;6:27421.
Wang Y, Dou L, He H, Zhang Y, Shen Q. Multifunctional nanoparticles as nanocarrier for vincristine sulfate delivery to overcome tumor multidrug resistance. Mol Pharm. 2014;11(3):885-94.
Wang. Y, Qu. W, Choi. SH. FDA's Regulatory Science Program for Generic PLA/ PLGA-Based Drug Products. 2016.
http://www.americanpharmaceuticalreview.com/Featured-Articles/188841-FDA-s-Regulatory-Science-Program-for-Generic-PLA-PLGA-Based-Drug-Products/
Wen X, Wang K, Zhao Z, Zhang Y, Sun T, Zhang F, et al. Brain-targeted delivery of trans-activating transcriptor-conjugated magnetic PLGA/lipid nanoparticles. PLoS One. 2014;9(9):e106652.
Xia H, Gao X, Gu G, Liu Z, Hu Q, Tu Y, et al. Penetratin-functionalized PEG–PLA nanoparticles for brain drug delivery. International Journal of Pharmaceutics. 2012;436(1):840-50.
Yan J, Wang Y, Jia Y, Liu S, Tian C, Pan W, et al. Co-delivery of docetaxel and curcumin prodrug via dual-targeted nanoparticles with synergistic antitumor activity against prostate cancer. Biomedicine & Pharmacotherapy. 2017;88:374-83.
Yang Z, Luo H, Cao Z, Chen Y, Gao J, Li Y, et al. Dual-targeting hybrid nanoparticles for the delivery of SN38 to Her2 and CD44 overexpressed human gastric cancer. Nanoscale. 2016;8(22):11543-58.
Yang Z, Tang W, Luo X, Zhang X, Zhang C, Li H, et al. Dual-Ligand Modified Polymer-Lipid Hybrid Nanoparticles for Docetaxel Targeting Delivery to Her2/neu Overexpressed Human Breast Cancer Cells. J Biomed Nanotechnol. 2015;11(8):1401-17.
Yu X, Trase I, Ren M, Duval K, Guo X, Chen Z. Design of Nanoparticle-Based Carriers for Targeted Drug Delivery. Journal of Nanomaterials. 2016;2016:15.
Zamboni WC, Torchilin V, Patri AK, Hrkach J, Stern S, Lee R, et al. Best Practices in Cancer Nanotechnology: Perspective from NCI Nanotechnology Alliance. Clinical Cancer Research. 2012;18(12):3229.
Zong T, Mei L, Gao H, Cai W, Zhu P, Shi K, et al. Synergistic dual-ligand doxorubicin liposomes improve targeting and therapeutic efficacy of brain glioma in animals. Mol Pharm. 2014;11(7):2346-57.
劉佳雯. 胜肽配體結合奈米粒主動標的於上皮生長因子受體之研究. 台灣大學藥學研究所 2011.
高立庭. 應用聚乳酸-甘醇酸接枝聚乙二醇二胺於奈米標的載體之研究. 台灣大學藥學研究所 2011.
簡瑋萱. 胜肽配體結合聚乳酸-甘醇酸接枝聚乙二醇二胺作為主動標的奈米載體之潛力. 台灣大學藥學研究所 2014.
蘇玫綺. 具有CD44受體標靶潛力之玻尿酸基因載體的研究. 台灣大學藥學研究所 2014.
李瑋綺. 具CD44標的潛力之奈米微胞基因遞送系統的研究. 台灣大學藥學研究所 2014.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20531-
dc.description.abstract標靶遞送近年來在醫療領域被廣泛的研究,尤其以奈米顆粒遞送系統為一大發展方向。在形成奈米顆粒的材料中,聚乳酸-甘醇酸 (Poly (lactide-co-glycolide), PLGA)所形成之奈米顆粒具有高穩定性與低毒性的優勢,在標靶遞送的研究領域備受矚目。
  本實驗以聚乳酸-甘醇酸 (Poly(lactide-co-glycolide), PLGA)與聚乙二醇二胺 (Poly (ethylene glycol) bis (amine), PEG diamine)合成PLGA-PEG共聚物,該共聚物經過核磁共振 (H1-NMR)、傅立葉轉換紅外線光譜儀確認化學結構與接枝率。接著,將兩種不同的胜肽-具有表皮生長因子受體標靶能力的NR7與細胞穿透肽TAT分別接枝在PLGA-PEG共聚物上。在細胞吞噬試驗中,將單一胜肽接枝或雙胜肽混合的PLGA-PEG以溶媒揮發法製備奈米顆粒,分別對於表皮生長因子受體過度表現的細胞株(SKOV3)與無過度表現的細胞株(MCF-7)進行試驗並比較。藥物包覆方面,以無胜肽、單一胜肽接枝或雙胜肽混合的PLGA-PEG以溶媒揮發法分別製備包覆歐洲紫杉醇或薑黃素的奈米顆粒,形成包覆藥物之無胜肽接枝奈米顆粒(NPs)、單胜肽接枝奈米顆粒(NR7-NPs、TAT-NPs)與雙胜肽接枝奈米顆粒(NR7TAT-NPs),並監測其粒徑、表面電位、包覆率與載藥率,並進一步進行含藥奈米顆粒的體外釋放試驗,確認藥物於pH 7.4及pH 4.0溶媒中的控釋功能。此外,本實驗以MTT試驗驗證胜肽接枝奈米顆粒的細胞吞噬效果,針對EGFR過度表現或無過度表現的細胞株進行歐洲紫杉醇與薑黃素單一藥物遞送試驗或共同藥物遞送試驗。另一方面,為了驗證奈米顆粒能提高生體可用率的效果,本實驗進行各劑型的藥物動力學試驗,監測大鼠的血中薑黃素與歐洲紫杉醇濃度,並與純藥注射的組別比較。
  實驗結果顯示,PLGA與PEG diamine接枝率可達292.5±4.2%,而在NR7-FITC與TAT-TAMRA的接枝反應中,在pH8.5環境中接枝率可分別達48.9±5.9%與87.5±8.5%。在EGFR過度表現細胞株的吞噬試驗中,接枝NR7的奈米顆粒吞噬程度為33.47±3.95%,接枝TAT的奈米顆粒則為57.04±3.80%,雙胜肽混和的奈米顆粒吞噬程度為78.51±4.48%;在EGFR無過度表現的細胞株方面,接枝NR7的奈米顆粒吞噬程度為11.04±3.57%,與對照組無差異,接枝TAT的奈米顆粒則為90.36±4.28%,雙胜肽混和的奈米顆粒吞噬程度為84.93±9.77%,與接枝TAT的奈米顆粒無顯著差異。
  奈米顆粒製備的部分,NPs-CUR粒徑為154.6±17.1 nm、PDI為0.11±0.05、表面電位為18.0±13.8 mV、包覆率為50.7±6.3%、載藥率為6.9±0.3%;NR7-NPs-CUR粒徑為137.0±4.4 nm、PDI為0.09±0.01、表面電位為-12.7±2.1、包覆率為56.0±4.8%、載藥率為7.4±0.3%;TAT-NPs-CUR粒徑為131.0±6.0 nm、PDI為0.05±0.02、表面電位為-12.8±2.10 mV、包覆率為54.8±4.3%、載藥率為7.2±0.2%;NR7TAT-NPs-CUR粒徑為129.6±12.1 nm、PDI為0.14±0.07、表面電位為-7.9±1.3 mV、包覆率為58.6±2.7%、載藥率為7.5±0.2%;NPs-DTX粒徑為196.5±7.1 nm、PDI為0.25±0.5、表面電位為15.8±4.0 mV、包覆率為79.6±5.2%、載藥率為13.0±0.3%;NR7-NPs-DTX粒徑為199.1±3.4 nm、PDI為0.25±0.3、表面電位為-15.1±2.0 mV、包覆率為80.6±8.7%、載藥率為12.6±0.9%;TAT-NPs-DTX粒徑為163.0±16.4 nm、PDI為0.16±0.5、表面電位為-13.1±0.9 mV、包覆率為69.7±6.0%、載藥率為11.9±0.6%;NR7TAT-NPs-DTX粒徑為174.7±1.2 nm、PDI為0.18±0.3、表面電位為-14.6±1.2 mV、包覆率為83.9±7.1%、載藥率為13.1±0.5%。在細胞毒性試驗中,Free CUR對SKOV3的IC50為3.82±0.34 µg/mL、NPs-CUR為3.56±0.18 µg/mL、NR7-NPs-CUR為2.96±0.11 µg/mL、TAT-NPs-CUR為1.87±0.63 µg/mL,NR7TAT-NPs-CUR則為2.37±0.32 µg/mL,NR7-NPs-CUR的IC50與NPs-CUR及Free CUR有顯著差異,NR7TAT-NPs-CUR及TAT-NPs-CUR與其他三組劑型皆有顯著差異;Free DTX對SKOV3的IC50為14.85±3.91 ng/mL、NPs-DTX為5.46±2.16 ng/mL、NR7-NPs-DTX為1.44±0.57 ng/mL、TAT-NPs-DTX為3.44±1.02 ng/mL,NR7TAT-NPs-DTX則為0.68±0.04 ng/mL,TAT-NPs-CUR對NPs-DTX無顯著差異,NR7-NPs-DTX與NR7TAT-NPs-DTX對NPs-DTX則有顯著差異。在Co-delivery部分,NR7TAT-NPs-DTX配合NR7TAT-NPs-CUR亦表現最佳的毒殺效果。
  在藥物動力學試驗方面,NPs-CUR與NR7-NPs-CUR及NR7TAT-NPs-CUR的藥物濃度曲線下面積無顯著差異 (p>0.05),且皆大於注射薑黃素純藥組別的十五倍至三十倍;NPs-DTX與NR7-NPs-DTX及NR7TAT-NPs-DTX之藥物濃度曲線下面積也無顯著差異 (p>0.05),並大於注射歐洲紫杉醇純藥組別五倍至七倍。
zh_TW
dc.description.abstractIn recent years, target delivery are being extensively researched. Specially, nanoparticles delivery system is a major development field. Among the material formed nsnoparticles, Poly (lactide-co-glycolide) (PLGA) has the advantages of high stability and low toxicity,getting much attention in target delivery research.
In this study, PLGA-PEG copolymer was synthesized with PLGA and PEG diamine. The copolymer was checked by nuclear magnetic resonance (H1-NMR) and fourier transform infrared spectrometer (FTIR) to confirm the chemical structure and conjugation ratio. Next, two different peptides, NR7, with epidermal growth factor receptor targeting ability, and TAT, one fo cell penetrating peptide, were conjugated to the PLGA-PEG copolymer. In cellular uptake assay, nanoparticles were prepared by solvent evaporation method with single peptide or double peptide conjugation. The SKOV3 cell lines, which were overexpressed in epidermal growth factor receptor and the non-overexpressed MCF-7 cell lines were tested and compared. Then, docetaxel and curcumin loaded nanoparticles were prepared by solvent evaporation methods and form the peptides-free (NPs), single peptide (NR7-NPs、TAT-NPs) and double peptides (NR7TAT-NPs) conjugated drug loaded nanoparticles, and the particle size, surface potential, entrapment efficiency and drug loading were monitored. Nanoparticles also were confirm the controlled release function in pH7.4 and pH4.0 by in vitro release assay. In addition, the cellular uptake of peptide-conjugated nanoparticles was verified by MTT assay. The docetaxel and curcumin single and co-drug delivery were test. Final, pharmacokinetic test were carried out to comfirm that nanoparticles can improve the bioavailability of the drug.
The results showed that the conjugated ratio of PLGA and PEG diamine was 292.5±4.2%. The conjugated ratio at pH 8.5 of NR7 and TAT were 48.9±5.9% and 87.5±8.5%, respectively. In the cellular uptake of EGFR overexpressing cell lines, the uptake ratio of NR7-NPs was 33.47±3.95%, TAT-NPs was 57.04±3.80% and NR7TAT-NPs was 78.51±4.48%. In EGFR nonoverexpressing cell lines, the uptake ratio of NR7-NPs was 11.04±3.57%, TAT-NPs was 90.36±4.28% and NR7TAT-NPs was 84.93±9.77%.
The particle size、PDI and zeta potential of NPs-CUR were 154.6±17.1 nm、0.11±0.05 and 18.0±13.8 mV, the entrapment efficiency(EE) and drug loading(DL) of NPs-CUR were 50.7±6.3% and 6.9±0.3%;the particle size、PDI and zeta potential of NR7-NPs-CUR were 137.0±4.4 nm、0.09±0.01 and -12.7±2.1 mV, the EE and DL of NR7-NPs-CUR were 56.0±4.8% and 7.4±0.3%;the particle size、PDI and zeta potential of TAT-NPs-CUR were 131.0±6.0 nm、0.05±0.02 and -12.8±2.10 mV, the EE and DL of TAT-NPs-CUR were 54.8±4.3% and 7.2±0.2%;the particle size、PDI and zeta potential of NR7TAT-NPs-CUR were 129.6±12.1 nm、0.14±0.07 and -7.9±1.3 mV, the EE and DL of NR7TAT-NPs-CUR were 58.6±2.7% and 7.5±0.2%;the particle size、PDI and zeta potential of NPs-DTX were 196.5±7.1 nm、0.25±0.5 and 15.8±4.0 mV, the EE and DL of NPs-DTX were 79.6±5.2% and 13.0±0.3%;the particle size、PDI and zeta potential of NR7-NPs-DTX were 199.1±3.4 nm、0.25±0.3 and -15.1±2.0 mV, the EE and DL of NR7-NPs-DTX were 80.6±8.7% and 12.6±0.9%;the particle size、PDI and zeta potential of TAT-NPs-DTX were 163.0±16.4 nm、0.16±0.5 and -13.1±0.9 mV, the EE and DL of TAT-NPs-DTX were 69.7±6.0% and 11.9±0.6%;the particle size、PDI and zeta potential of NR7TAT-NPs-DTX were 174.7±1.2 nm、0.18±0.3 and -14.6±1.2 mV, the EE and DL of NR7TAT-NPs-DTX were 83.9±7.1% and 13.1±0.5%. In the cytotoxicity assay, the IC50 of Free CUR to SKOV3 was 3.82±0.34 µg/mL, NPs-CUR was 3.56±0.18 µg/mL, NR7-NPs-CUR was 2.96±0.11 µg/mL, TAT-NPs-CUR was 1.87±0.63 µg/mL, and NR7TAT-NPs-CUR was 2.37±0.32 µg/mL, showing better delivery effect than the other groups (p<0.05). The IC50 of Free DTX to SKOV3 was 14.85±3.91 ng/mL, NPs-DTX was 5.46±2.16 ng/mL, NR7-NPs-DTX was 1.44±0.57 ng/mL, TAT-NPs-DTX was 3.44±1.02 ng/mL, and NR7TAT-NPs-DTX was 0.68±0.04 ng/mL. There was no significant different between the IC50 of TAT-NPs-DTX and NPs-DTX, however, the IC50 of NR7-NPs-DTX and NR7TAT-NPs-DTX were significantly different for NPs-DTX. In co-delivery test, NR7TAT-NPs-CUR and NR7TAT-NPs-DTX also showed better cytotoxicity than free dug and single peptide NPs in SKOV3 cell.
  In the pharmacokinetic test, the AUC of different group of NPs-CUR、NR7-NPs-CUR and NR7TAT-NPs-CUR were not significantly different (p > 0.05), and all were better than free curcumin by fifteen to thirty times; the AUC of NPs-DTX、NR7-NPs-DTX and NR7TAT-NPs-DTX also were not significantly different (p > 0.05) and all were better than free docetaxel by five to seven times.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:52:05Z (GMT). No. of bitstreams: 1
ntu-106-R04423007-1.pdf: 5964455 bytes, checksum: 6957988265ed6a52525e5b3e8473ff52 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents致謝 I
中文摘要 II
Abstract V
目錄 VIII
圖目錄 XIII
表目錄 XXI
第一章 緒論 1
一、奈米載體應用於癌症藥物傳輸系統 1
(一) 有機奈米材料 (organic/polymeric) 3
(二) 無機奈米材料 (inorganic) 3
二、奈米載體之遞送策略 4
(一) 被動型標的 (Passive targeting) 4
(二) 主動型標的 (Active targeting) 6
(三) 多重標靶標的 (Multiligand targeting) 8
三、聚乳酸-甘醇酸 (Poly (lactide-co-glycolide), PLGA) 9
四、奈米顆粒之聚乙二醇 (Poly (ethylene gycol))修飾與困境 11
五、表皮生長因子受體 (Epidermal growth factor receptor, EGFR) 13
六、NR7胜肽 14
七、TAT胜肽 15
八、歐洲紫杉醇與薑黃素共同遞送 17
(一) 歐洲紫杉醇 (Docetaxel) 17
(二) 薑黃素 (Curcumin) 19
(三) 歐洲紫杉醇與薑黃素共同遞送 20
第二章 實驗動機與目的 24
第三章 實驗試劑與儀器 26
一、藥品 26
二、細胞實驗材料 28
三、儀器 29
四、耗材 32
五、藥品溶液與緩衝溶液製備 32
第四章 實驗方法 34
一、PLGA-PEG-NH2之合成與檢驗 37
(一) PLGA接枝PEG-diamine 37
(二) PLGA-PEG-NH2之物性檢驗 40
二、PLGA-PEG-NR7與PLGA-PEG-TAT之合成與奈米顆粒製備 42
(一) PLGA-PEG-NPs製備 43
(二) PLGA-PEG-FITC、PLGA-PEG-NR7與PLGA-PEG-TAT之合成 (劉佳雯,2011) 43
(三) PLGA-PEG-NR7與PLGA-PEG-TAT之檢測 45
(四) NPs與peptide-NPs製備 46
(五) 奈米顆粒之粒徑與表面電位檢驗 48
(六) 奈米顆粒之穿透式電子顯微鏡檢驗 48
三、PLGA-PEG接枝NR7-FITC及TAT-TAMRA奈米顆粒的細胞吞噬試驗 (劉佳雯. 2011) 49
(一) NR7-NPs、TAT-NPs、NR7TAT-NPs的細胞吞噬試驗 49
(二) NR7-NPs、TAT-NPs、NR7TAT-NPs進入細胞之途徑探討 51
(三) NR7-NPs、TAT-NPs、NR7TAT-NPs細胞吞噬之時間依賴性探討 52
四、PLGA-PEG接枝NR7-FITC及TAT-TAMRA奈米顆粒的細胞吞噬試驗之共軛焦螢光顯鏡分析 53
五、包覆薑黃素之奈米顆粒製備 54
(一) 包覆薑黃素之peptide接枝PLGA-PEG奈米顆粒製備 54
(二) 奈米顆粒中薑黃素之定量方法 56
(三) 包覆薑黃素奈米顆粒之粒徑與表面電位檢驗 57
六、包覆歐洲紫杉醇之peptide接枝PLGA-PEG奈米顆粒製備 58
(一) 包覆歐洲紫杉醇之peptide接枝PLGA-PEG奈米顆粒製備 58
(二) 奈米顆粒中歐洲紫杉醇之定量方法 60
(三) 包覆歐洲紫杉醇奈米顆粒之粒徑與表面電位檢驗 61
七、薑黃素與歐洲紫杉醇的體外釋放實驗 62
(一) 薑黃素與歐洲紫杉醇的體外釋放實驗(高立庭, 2012) 62
(二) 薑黃素與歐洲紫杉醇的體外釋放動力學模組評估 63
八、細胞存活率試驗 (李瑋琦, 2014) 65
(一) Peptide接枝PLGA的毒性 66
(二) Peptide接枝PLGA的作用濃度 67
(三) 包覆薑黃素奈米顆粒的IC50、包覆歐洲紫杉醇奈米顆粒的IC50與共同遞送包覆薑黃素奈米顆粒及包覆歐洲紫杉醇奈米顆粒 68
九、包覆藥物之奈米顆粒放大製備試驗與藥物動力學試驗 72
(一) 包覆薑黃素之奈米顆粒放大製備 72
(二) 包覆薑黃素奈米顆粒之粒徑與表面電位檢驗 74
(三) 藥物動力學試驗 (Milind Sadashiv Alai, 2012) 74
(四) 大鼠血清薑黃素含量檢驗 76
(五) 大鼠血清歐洲紫杉醇含量檢驗 76
(六) 大鼠血清之藥物動力學數據 78
十、統計分析 78
第五章 實驗結果 79
一、PLGA-PEG-NH2之合成與檢驗 79
(一) PLGA-NHS之製備 79
(二) PLGA-PEG之製備 81
(三) 核磁共振光譜 (NMR) 81
(四) 紅外線分光光譜儀 (FT-IR) 83
(五) 分子量測定 85
二、PLGA-PEG-NR7與PLGA-PEG-TAT之合成與奈米顆粒製備 88
(一) PLGA-PEG-NR7與PLGA-PEG-TAT合成 88
(二) PLGA-PEG-FITC-NPs與PLGA-PEG-peptide-NPs製備 94
三、PLGA-PEG接枝NR7-FITC及TAT-TAMRA奈米顆粒的細胞吞噬試驗 100
(一) NR7-NPs、TAT-NPs、NR7TAT-NPs的細胞吞噬試驗 100
(二) NR7-NPs、TAT-NPs、NR7TAT-NPs進入細胞之途徑探討 109
(三) NR7-NPs、TAT-NPs、NR7TAT-NPs細胞吞噬之時間依賴性探討 111
四、PLGA-PEG接枝NR7-FITC及TAT-TAMRA奈米顆粒的細胞吞噬試驗之螢光顯鏡分析 113
五、包覆藥物之奈米顆粒製備 124
(一) 奈米顆粒中薑黃素之定量方法 124
(二) 包覆薑黃素之奈米顆粒製備 125
(三) 包覆薑黃素之奈米顆粒之安定性 128
(四) 奈米顆粒中歐洲紫杉醇之定量方法 130
(五) 包覆歐洲紫杉醇之奈米顆粒製備 132
(六) 包覆歐洲紫杉醇之奈米顆粒之安定性 135
六、薑黃素與歐洲紫杉醇的體外釋放實驗 138
(一) 體外釋放試驗之薑黃素定量 138
(二) 體外釋放試驗之歐洲紫杉醇定量 141
(三) 包覆薑黃素奈米顆粒之體外釋放試驗 144
(四) 包覆歐洲紫杉醇奈米顆粒之體外釋放試驗 149
七、細胞存活率試驗 154
(一) Peptide接枝PLGA的24小時毒性 154
(二) Peptide接枝PLGA的作用濃度 158
(三) 包覆薑黃素之奈米顆粒的IC50 162
(四) 包覆歐洲紫杉醇奈米顆粒的IC50 167
(五) 共同遞送包覆歐洲紫杉醇奈米顆粒與包覆薑黃素之奈米顆粒的比較…………………………………………………………………………….…………….172
八、包覆藥物之奈米顆粒放大製備試驗與藥物動力學試驗 179
(一) 包覆薑黃素之奈米顆粒放大製備 179
(二) 大鼠血清中薑黃素定量 181
(三) 包覆薑黃素奈米顆粒之藥物動力學試驗 183
(四) 大鼠血清中歐洲紫杉醇定量 186
(五) 包覆歐洲紫杉醇奈米顆粒之藥物動力學試驗 188
第六章 討論 191
一、胜肽接枝奈米顆粒之物性檢測 191
二、薑黃素與歐洲紫杉醇的體外釋放實驗 191
三、NR7TAT-NPs與TAT-NPs之毒性比較 192
四、薑黃素與歐洲紫杉醇的藥物動力學試驗 193
第七章 結論 194
第七章 參考文獻 199
dc.language.isozh-TW
dc.title雙胜肽接枝奈米劑型應用於抗癌藥物遞送zh_TW
dc.titleThe application of dual peptide conjugated nanoparticles in anticancer drug deliveryen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鍾次文,糜福龍
dc.subject.keyword聚乳酸-甘醇酸,歐洲紫杉醇,薑黃素,表皮生長因子受體,細胞穿透?,共同遞送治療,藥物動力學,zh_TW
dc.subject.keywordPLGA,docetaxel,curcumin,epidermal growth factor receptor,cell penetrating peptide,co-delivery therapy,pharmacokinetics,en
dc.relation.page212
dc.identifier.doi10.6342/NTU201703223
dc.rights.note未授權
dc.date.accepted2017-08-14
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
5.82 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved