Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19982
Title: 基於行為經濟學與價量分析使用增強式學習演算法建立臺灣股票指數期貨交易策略
Establish Taiwan Stock Index Future Trading Strategies Using Reinforcement Learning Based on Behavioral Economics and Price-volume Analysis
Authors: Hsiang-Feng Chuang
莊向峰
Advisor: 張智星
Co-Advisor: 陳永耀(yychen@ntu.edu.tw)
Keyword: 交易策略,臺股期貨,增強式學習,Q-learning,機器學習,行為經濟學,事件研究,
Trading strategy,Taiwan stock index futures,Reinforcement learning,Q-learning,Machine learning,Behavioral economics,Event study,
Publication Year : 2018
Degree: 碩士
Abstract: 本研究試圖基於行為經濟學及價量分析理論對於金融交易市場的動態行為進行分析,並試圖使用機器學習演算法建立交易策略。我們先試圖從事件研究中,尋找合適的進場時機,在此我們使用了K-means進行對價格與成交量進行分群,基於行為經濟學市場過度樂觀及過度恐慌的理論,將帶量大漲及帶量大跌視為事件,並且在分群前對成交量的正規化計算時,設計不同的實驗,分析其找到的事件前後的價格變動情形。而在出場時機的部分,我們採用了增強式學習演算法,增強式學習的概念是基於對環境的觀察與環境互動取得報酬,並且具有延遲報酬的特性,我們將此演算法對映到了交易策略的決策上,希望訓練出一個模型,尋找到好的出場時機,在此我們針對增強式學習中的Observation設計實驗,分析不同的Observation對於模型的影響。最後我們會對我們的建立交易策略及買進持有策略(Buy and Hold)進行回測,並且比較兩者的績效表現。
This study attempts to analyze the dynamic behavior of the financial trading market based on behavioral economics and price analysis theory, and attempts to establish trading strategies using machine learning algorithms. We first tried to find suitable entry opportunities from the event study. We used K-means to cluster prices and volume, and based on the theory of excessive optimism and excessive panic in the behavioral economics market, we took the increase in volume and the fall in volume as an event, and we normalized the volume before clustering. In the normalization calculation, different experiments were designed to analyze the price changes before and after the events they found. In the part of the timing of closing the position, we choose reinforcement learning algorithm. The concept of reinforcement learning is based on observation of the environment and interaction with the environment to obtain reward, and has the characteristics of delayed reward. We have mapped this algorithm to the trading strategy. In the decision-making, we hope to train a model and find a good time for closing the position. We focus on the Observation design experiments in the reinforcement learning and analyze the effects of different observations on the model. Finally, we will backtest our established trading strategies and buy and hold strategies and compare their performance.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19982
DOI: 10.6342/NTU201801717
Fulltext Rights: 未授權
Appears in Collections:資訊網路與多媒體研究所

Files in This Item:
File SizeFormat 
ntu-107-1.pdf
  Restricted Access
5.6 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved