Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19353
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖洺漢(Ming Han Liao)
dc.contributor.authorShih-Kang Chenen
dc.contributor.author陳世岡zh_TW
dc.date.accessioned2021-06-08T01:55:02Z-
dc.date.copyright2016-07-26
dc.date.issued2016
dc.date.submitted2016-07-12
dc.identifier.citation[1] Chang-Yi Liu. 2015. Development of Bismuth Telluride Alloy Thin Film Thermoelectric Devices. Master Thesis. Taiwan: National Taiwan University, Department of Mechanical Engineering.
[2] E. Altenkirch, “Physikalische Zeitschrift”, 10, 560–580(1909)
[3] A.F.Ioffe, “Semiconductor Thermoelements and Thermoelectric Cooling”, Infosearch, London(1957)
[4] H.J.Goldsmid, R.W.Douglas, “The use of semiconductors in thermoelectric refrigeration” , British Journal of Applied physics, 5, 386-390(1954)
[5] L.D.Hicks, and M.S.Dresselhaus, “Thermoelectric figure of merit of a one-dimensional conductor”, Phys. Rev. B, 47, 16631(1993)
[6] G.A. Slack, in: M. Rowe (Ed.), CRC Handbook of Thermoelectrics, CRC Press, Boca Raton, FL(1995)
[7] L.D.Hicks, T.C.Harman, X.Sun, M.S.Dresselhaus, “Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit”, Phys. Rev. B, 53, R10493(1996)
[8] B.C.Sales, D.Mandrus, R.K.Williams, “Filled Skutterudite Antimonides:A New Class of Thermoelectric Materials”, Science, 272, 1325(1996)
[9] Q. Shen, L. Chen, T. Goto, T. Hirai, J. Yang, G. P. Meisner,C. Uher, “Effects of partial substitution of Ni by Pd on the thermoelectric properties of ZrNiSn-based half-Heusler compounds”, Appl. Phys. Lett, 79, 4165(2001)
[10] T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. LaForge,“Quantum Dot Superlattice Thermoelectric Materials and Devices”,Science, 297, 2229(2002)
[11] K. F. Hsu ,“Cubic AgnPbmSbnTem+2n:bulk thermoelectric materials with high figure of merit”, Science, 303, 818-821(2004)
[12] Xinfeng Tang, Qingjie Zhang, Lidong Chen, Takashi Goto, Toshio Hirai,“Synthesis and thermoelectric properties of p-type- and n-type-filled skutterudite RyMxCo4−xSb12(R:Ce,Ba,Y;M:Fe,Ni)”, Journal of Applied physics, 97, 093712(2005)
[13] Y.Z.Pei, L.D.Chen, W.Zhang, X.Shi, S.Q.Bai, X.Y.Zhao, Z.G.Mei, X.Y.Li, “Synthesis and thermoelectric properties of KyCo4Sb12” , Appl. Phys. Lett, 89, 221107(2006)
[14] Heng Wang, Jing-Feng Li, Ce-Wen Nan, Min Zhou, Weishu Liu, Bo-Ping Zhang, Takuji Kita, “High-performance Ag0.8Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering” , Appl. Phys. Lett,88, 092104(2006)
[15] S.R.Culp, S.J.Poon, N.Hickman, T.M.Tritt, J.Blumm, “Effect of substitutions on the thermoelectric figure of merit of half-Heusler phases at 800 °C” , Appl. Phys. Lett., 88, 042106(2006)
[16] J.Androulakis, K.F.Hsu, R.Pcionek, H.Kong, C.Uher, J.J.Dangelo, “Nanostructuring and high thermoelectricefficiency in p-type Ag(Pb1-ySny)mSbTe2+m” , Advanced Materials, 181170-1173(2006)
[17] P.F.R.Poudeu, J.D.Angelo, A.D.Downey, J.L.Short,T.P. Hogan, M.G.Kanatzidis, “High thermoelectric figure ofmerit and nanostructuring in bulk p-type Na1-xPbmSbyTem+2” , Angewandte Chemie, International Edition , 45, 3835-3839(2006)
[18] Bed Poudel, Qing Hao, Yi Ma, Yucheng Lan, Austin Minnich, Bo Yu, Xiao Yan, Dezhi Wang, Andrew Muto, Daryoosh Vashaee, Xiaoyuan Chen, Junming Liu, Mildred S.Dresselhaus, Gang Chen, Zhifeng Ren, “High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys” , Science, 320, 634(2008)
[19] X.W.Wang, H.Lee, Y.C.Lan, G.H.Zhu, G.Joshi, D.Z.Wang, J.Yang, A.J.Muto, M.Y.Tang, J.Klatsky, S.Song, M.S.Dresselhaus,G.Chen, Z.F.Ren,“Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy” , Appl. Phys. Lett, 93, 193121(2008)
[20] Heng Wang, Jing-Feng Li, Minmin Zou, Tao Sui, “Synthesis and transport property of AgSbTe2 as a promising thermoelectric compound” , Appl. Phys. Lett, 93, 202106(2008)
[21] A.I.Boukai, Y.Bunimovich, J.Tahir-Kheli, J.-K. Yu,W.A. Goddard III, J.R. Heath, , “Silicon nanowires as efficient thermoelectric materials” , Nature, 45, 1168–171(2008)
[22] Wenjie Xie, Xinfeng Tang, Yonggao Yan, Qingjie Zhang, Terry M. Tritt, “Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys” , Appl. Phys. Lett, 94, 102111 (2009).
[23] Y.Q.Cao, X.B.Zhao, T.J.Zhu, X.B.Zhang and J.P.Tu, “Syntheses and thermoelectric properties of Bi2Te3/Sb2Te3 bulk nanocomposites with laminated nanostructure” , Appl. Phys. Lett, 92, 143106(2008)
[24] Han Li, Xinfeng Tang, Qingjie Zhang, Ctirad Uher, “High performance InxCeyCo4Sb12 thermoelectric materials with in situ forming nanostructured InSb phase” , Appl. Phys. Lett, 94, 102114(2009).
[25] Li-Dong Zhao, Bo-Ping Zhang, Wei-Shu Liu, Jing-Feng Li, “Effect of mixed grain sizes on thermoelectric performance of Bi2Te3 compound”, J. Appl. Phys, 105, 023704(2009)
[26] Pierre F. P. Poudeu, Aurelie Gueguen, Chun-I Wu, Tim Hogan, Mercouri G. Kanatzidis, “High Figure of Merit in Nanostructured n-Type KPbmSbTem+2 Thermoelectric Materials”, Chem. Mater, 22, 1046(2010)
[27] X.Shi, J.Yang, J.R.Salvador, M.Chi, J.Y.Cho, H.Wang, et al., “Multiple-filled skutterudites: High thermoelectric figure of merit through separately optimizing electrical and thermal transports”, Journal of the American Chemical Society, 133, 7837-7846(2011)
[28] S.Fan, J.Zhao, J.Guo, Q.Yan, J.Ma, H.H.Hng, “p-type Bi0.4Sb1.6Te3 nanocomposites with enhanced figure of merit”, Applied Physics Letters , 96, 182104(2010)
[29] Y.Ma, Q.Hao, B.Poudel, Y.Lan, B.Yu, D.Wang, et al., “Enhanced thermoelectric figure-of-merit in p-type nanostructured bismuth antimony tellurium alloys made from elemental chunks”, Nano Letters , 8, 2580-2584(2008)
[30] Y.Lan, B.Poudel, Y.Ma, D.Wang, M.S.Dresselhaus, G.Chen, et al., “Structure study of bulk nanograined thermoelectric bismuth antimony telluride”, Nano Letters ,9 , 1419-1422(2009)
[31] Y.Q.Cao, X.B.Zhao, T.J.Zhu, X.B.Zhang, J.P.Tu, “Syntheses and thermoelectric properties of Bi2Te3/Sb2Te3 bulk nanocomposites with laminated nanostructure”, Applied Physics Letters , 92, 143106(2008)
[32] B.A. Cook, M.J. Kramer, J.L. Harringa, M.K. Han, D.Y. Chung, M.G. Kanatzidis, “Analysis of nanostructuring in high figure of merit Ag1-xPbmSbTe2+m thermoelectric materials”, Advanced Functional Materials, 19, 1254-1259(2009)
[33] J. Androulakis, C.H. Lin, H.J. Kong, C. Uher, C.I. Wu, T. Hogan, et al., “Spinodal decomposition and nucleation and growth as a means to bulk nanostructured thermoelectrics: enhanced performance in Pb1-xSnxTePbS”, Journal of the American Chemical Society, 129 , 9780-9788(2007)
[34] L.D.Hicks, T.C.Harman, X.Sun, M.S.Dresselhaus, “Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit”, Physical Review, B 53 , R10493(1996)
[35] T.He, J.Chen, H.D.Rosenfeld, M.A.Subramanian, “Thermoelectric properties of indium-filled skutterudites”, Chemistry of Materials, 18, 759-762(2006)
[36] W.S.Liu, B.P.Zhang, L.D.Zhao, J.F.Li, “Improvement ofthermoelectric performance of CoSb3-xTex skutterudite compounds by additional substitution of IVB-group elements for Sb”, Chemistry of Materials, 20, 7526-7531(2008)
[37] H.Li, X.F.Tang, X.L.Su, Q.J.Zhang, “Preparation and thermoelectric properties of high-performance Sb additional Yb0.2Co4Sb12+y bulk materials with nanostructure”, Applied Physics Letters , 92 , 202114(2008)
[38] H.Li, X.F.Tang, Q.J.Zhang, C.Uher, “Rapid preparation method of bulk nanostructured Yb0.3Co4Sb12+y compounds and their improved thermoelectric performance”, Applied Physics Letters , 93, 202114(2008)
[39] W.Zhao, P.Wei, Q.Zhang, C.Dong, L.Liu, X.Tang, “Enhanced thermoelectric performance in barium and indium double-filled skutterudite bulk materials via orbital hybridization induced by indium filler”, Journal of the American Chemical Society, 131, 3713-3720(2009)
[40] Y.Z.Pei, J.Yang, L.D.Chen, W.Zhang, J.R.Salvador, J.H.Yang, “Improving thermoelectric performance of caged compounds through light-element filling”, Applied Physics Letters, 95, 042101(2009)
[41] A.I.Hochbaum, R.Chen, R.D.Delgado, W.Liang, E.C.Garnett, M.Najarian, et al., “Enhanced thermoelectric performance of rough silicon nanowires”, Nature 451 ,163-U165(2008)
[42] X.B.Zhao, S.H.Yang, Y.Q.Cao, J.L.Mi, Q.Zhang, T.J.Zhu, “Synthesis of nanocomposites with improved thermoelectric properties”, Journal of Electronic Materials , 38, 1017-1024(2009)
[43] X.Yan, B.Poudel, Y.Ma, W.S.Liu, G.Joshi, H.Wang, et al., “Experimental studies on anisotropic thermoelectric properties and structures of n-Type Bi2Te2.7Se0.3”, Nano Letters ,10 , 3373-3378(2010)
[44] W.Xie, J.He, H.J.Kang, X.Tang, S.Zhu, M.Laver, et al., “Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi, Sb)2Te3 nanocomposites”, Nano Letters ,10 , 3283-3289(2010)
[45] J.Androulakis, K.F.Hsu, R.Pcionek, H.Kong, C.Uher, J.J.Dangelo, et al., “Nanostructuring and High Thermoelectric Efficiency in p-Type Ag(Pb1 – ySny)mSbTe2 + m”, Advanced Materials , 18, 1170-1173(2006)
[46] P.F.P. Poudeu, J. D’Angelo, H. Kong, A. Downey, J.L. Short, R. Pcionek, et al., “Nanostructures versus solid solutions: low lattice thermal conductivity and enhanced thermoelectric figure of merit in Pb9.6Sb0.2Te10-xSex bulk materials”, Journal of the American Chemical Society ,128, 14347-14355(2006)
[47] J.R.Sootsman, H.Kong, C.Uher, J.J. D’Angelo, C.I.Wu, T.P. Hogan, et al., “Large enhancements in the thermoelectric power factor of bulk PbTe at high temperature by synergistic nanostructuring”, Angewandte Chemie, International Edition ,47 , 8618-8622(2008)
[48] J.R. Sootsman, J. He, V.P. Dravid, S. Ballikaya, D. Vermeulen, C. Uher, et al., “Microstructure and thermoelectric properties of mechanically tobust PbTe–Si eutectic composites”, Chemistry of Materials, 22, 869-875(2010
[49] G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang et al., “Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys”, Nano Letters, 84, 670-4674(2008)
[50] X.W. Wang, H. Lee, Y.C. Lan, G.H. Zhu, G. Joshi, D.Z. Wang, et al., “Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy”, Applied Physics Letters, 93, 193121(2008)
[51] J.S. Rhyee, K.H. Lee, S.M. Lee, E. Cho, S.I. Kim, E. Lee, et al., “Peierls distortion as a route to high thermoelectric performance in In4Se3- crystals”, Nature, 459, 965-968(2009)
[52] J.S.Rhyee, K.Ahn, K.H.Lee, H.S.Ji, J.-H.Shim, “Enhancement of the thermoelectric figure-of-merit in a wide temperature range in In4Se3-xCl0.03 bulk crystals”, Advanced Materials, 23, 2191-2194(2011)
[53] Ajay Soni, Zhao Yanyuan, Yu Ligen, Michael Khor Khiam Aik, Mildred S. Dresselhaus, Qihua Xiong, “Enhanced Thermoelectric Properties of Solution Grown Bi2Te3-xSex Nanoplatelet Composites”, Nano Lett., 12, 1203-1209(2012)
[54] Zhengliang Du, Tiejun Zhu, Xinbing Zhao, “Enhanced thermoelectric properties of Mg2Si0.58Sn0.42 compounds by Bi doping”, Materials Letters, 66, 76–78 (2012)
[55] Fu Li, Jing-Feng Li, Li-Dong Zhao, Kai Xiang, Yong Liu, Bo-Ping Zhang, Yuan-Hua Lin, Ce-Wen Nana, Hong-Min Zhu, “Polycrystalline BiCuSeO oxide as a potential thermoelectric material”, Energy Environ. Sci., 5, 7188(2012)
[56] Jing Li, Jiehe Sui, Yanling Pei, Celine Barreteau, David Berardan, Nita Dragoe, Wei Cai, Jiaqing He, Li-Dong Zhao, “A high thermoelectric figure of merit ZT > 1 in Ba heavily doped BiCuSeO oxyselenides”, Energy Environ. Sci., 5, 8543(2012)
[57] Li-Dong Zhao, Jiaqing He, Shiqiang Hao, Chun-I Wu, Timothy P. Hogan, C. Wolverton, Vinayak P.Dravid, Mercouri G. Kanatzidis, “Raising the Thermoelectric Performance of p‑Type PbS with Endotaxial Nanostructuring and Valence-Band Offset Engineering Using CdS and ZnS”, J. Am. Chem. Soc, 134, 16327−16336(2012)
[58] Theerayuth Plirdpring, Ken Kurosaki, Atsuko Kosuga, Tristan Day, Samad Firdosy, Vilupanur Ravi, G. Jeffrey Snyder, Adul Harnwunggmoung, Tohru Sugahara, Yuji Ohishi, Hiroaki Muta, Shinsuke Yamanaka, “Chalcopyrite CuGaTe2:A High-Effi ciency Bulk Thermoelectric Material”, Adv. Mater, 24, 3622–3626(2012)
[59] Yanzhong Pei, Aaron D.LaLonde, Nicholas A. Heinz , and G. Jeffrey Snyder ,“High Thermoelectric Figure of Merit in PbTe Alloys Demonstrated in PbTe–CdTe”, Adv. Energy Mater, 2, 670–675(2012)
[60] Qian Zhang, Feng Cao, Weishu Liu, Kevin Lukas, Bo Yu, Shuo Chen, Cyril Opeil, David Broido, Gang Chen, Zhifeng Ren, “Heavy Doping and Band Engineering by Potassium to Improve the Thermoelectric Figure of Merit in p-Type PbTe, PbSe, and PbTe1-ySey”, J. Am. Chem. Soc, 134, 10031-10038(2012)
[61] Chia-Jyi Liu, Hsin -Chang Lai, Yen-Liang Liu, Liang-Ru Chen , “High thermoelectric figure-of-merit in p-type nanostructured (Bi,Sb)2Te3 fabricated via hydrothermal synthesis and evacuated-and-encapsulated sintering”, J. Mater. Chem, 22, 4825(2012)
[62] Eun Kyung Lee, Liang Yin, Yongjin Lee, Jong Woon Lee, Sang Jin Lee, Junho Lee, Seung Nam Cha, Dongmok Whang, Gyeong S. Hwang, Kedar Hippalgaonkar, Arun Majumdar, Choongho Yu, Byoung Lyong Choi, Jong Min Kim, Kinam Kim, “Large Thermoelectric Figure-of-Merits from SiGe Nanowires by Simultaneously Measuring Electrical and Thermal Transport Properties”, Nano Lett., 12, 2918−2923(2012)
[63] Jianhui Li, Qing Tan, Jing-Feng Li , “Synthesis and property evaluation of CuFeS2-x as earth-abundant and environmentally-friendly thermoelectric materials”, Journal of Alloys and Compounds , 551, 143–149(2013)
[64] S. Battiston, S. Fiameni, M. Saleemi, S. Boldrini, A. Famengo, F. Agresti, M. Stingaciu, M.S. Toprak, M. Fabrizio, S. Barison,“Synthesis and Characterization of Al-Doped Mg¬2Si Thermoelectric Materials”, Journal of Electronic Materials, 42, 1956-1959(2013)
[65] Yan-Ling Pei, Jiaqing He, Jing-Feng Li, Fu Li, Qijun Liu, Wei Pan, Celine Barreteau, David Berardan, Nita Dragoe and Li-Dong Zhao, “High thermoelectric performance of oxyselenides: intrinsically low thermal conductivity of Ca-doped BiCuSeO”, NPG Asia Materials, 5, e47 (2013)
[66] Xu Lu, Donald T. Morelli, Yi Xia, Fei Zhou, Vidvuds Ozolins, Hang Chi, Xiaoyuan Zhou, and Ctirad Uher, “High Performance Thermoelectricity in Earth-Abundant Compounds Based on Natural Mineral Tetrahedrites”, Adv. Energy Mater., 3, 342–348(2013)
[67] Satya N. Guin, Arindom Chatterjee, Devendra Singh Negi, Ranjan Datta and Kanishka Biswas, “High thermoelectric performance in tellurium free p-type AgSbSe2”, Energy Environ. Sci., 6, 2603–2608 (2013)
[68] Jianhui Li, Qing Tan, Jing-Feng Li, Da-Wei Liu, Fu Li, Zong-Yue Li, Minmin Zou, and Ke Wang, “BiSbTe-Based Nanocomposites with High ZT: The Effect of SiC Nanodispersion on Thermoelectric Properties”, Adv. Funct. Mater., 23, 4317–4323(2013)
[69] A.U. Khan, N. Vlachos and Th. Kyratsi, “High thermoelectric figure of merit of Mg2Si0.55Sn0.4Ge0.05 materials doped with Bi and Sb”, Scripta Materialia, 69, 606–609(2013)
[70] P K Rawat, B Paul and P Banerji, “Thermoelectric properties of PbSe0.5Te0.5: x (PbI2) with endotaxial nanostructures: a promising n-type thermoelectric material”, Nanotechnology, 24, 215401(2013)
[71] Li-Dong Zhao, Shiqiang Hao, Shih-Han Lo, Chun-I Wu, Xiaoyuan Zhou, Yeseul Lee, Hao Li, Kanishka Biswas, Timothy P. Hogan, Ctirad Uher, C. Wolverton, Vinayak P. Dravid, and Mercouri G. Kanatzidis, “High Thermoelectric Performance via Hierarchical Compositionally Alloyed Nanostructures”, J. Am. Chem. Soc., 135, 7364−7370(2013)
[72] Huili Liu, Xun Yuan, Ping Lu, Xun Shi, Fangfang Xu, Ying He, Yunshan Tang, Shengqiang Bai, Wenqing Zhang , Lidong Chen, Yue Lin, Lei Shi, He Lin, Xingyu Gao, Xingmin Zhang, Hang Chi, and Ctirad Uher,“Ultrahigh Thermoelectric Performance by Electron and Phonon Critical Scattering in Cu2Se 1-xIx”, Adv. Mater., 25, 6607–6612(2013
[73] Xueli Du, Fengshi Cai, Xuewei Wang,“Enhanced thermoelectric performance of chloride doped bismuth sulfide prepared by mechanical alloying and spark plasma sintering”, Journal of Alloys and Compounds , 587 , 6–9(2014)
[74] Tian-Ran Wei, Heng Wang, Zachary M. Gibbs, Chao-Feng Wu, G. Jeffrey Snyderb and Jing-Feng Li, “Thermoelectric properties of Sn-doped p-type Cu3SbSe4: a compound with large effective mass and small band gap”, J. Mater. Chem., A, 2,13527(2014)
[75] Shaowei Song, Jueling Wang, Bo Xu, Xiaobo Lei, Hongchuan Jiang, Yingrong Jin, Qinyong Zhang, Zhifeng Ren, “Thermoelectric properties of n-type Bi2Te2.7Se0.3 with addition of nano-ZnO: Al particles”, Mater. Res. Express, 1, 035901(2014)
[76] Satya N. Guin, Arindom Chatterjee, Kanishka Biswas, “Enhanced thermoelectric performance in p-type AgSbSe2 by Cd-doping”, RSC Adv, 4, 11811(2014)
[77] Yemao Han, Zhen Chen, Caini Xin, Yanzhong Pei, Min Zhou, Rongjin Huang, Laifeng Li, “Improved thermoelectric performance of Nb-doped lead selenide”, Journal of Alloys and Compounds, 600, 91–95(2014)
[78] T.H.Zou, X.Y.Qin, D.Li, B.J.Ren, G.L.Sun, Y.C.Dou, Y.Y Li, L.L.Li, J.Zhang, H.X.Xin,“Enhanced thermoelectric performance via carrier energy filtering effectin β-Zn4Sb3 alloy bulk embedded with (Bi2Te3)0.2(Sb2Te3)0.8”, J. Appl. Phys, 115, 053710(2014)
[79] Yinglu Tang, Yuting Qiu, Lili Xi, b Xun Shi, Wenqing Zhang, Lidong Chen, Ssu-Ming Tseng, Sinn-wen Chen, G. Jeffrey Snyder, “Phase diagram of In–Co–Sb system and thermoelectric properties of In-containing skutterudites”, Energy Environ. Sci, 7, 812(2014)
[80] Jian Zhang, Xiaoying Qin, Di Li, Hongxing Xin, Cunjun Song, Liangliang Li, Xiaoguang Zhu, Zhaoming Wang, Guanglei Guo, Ling Wang, “Enhanced thermoelectric performance of CuGaTe2 based composites incorporated with nanophase Cu2Se”, J. Mater. Chem. A, 2, 2891(2014)
[81] Tulashi Dahal, Qing Jie, Giri Joshi, Shuo Chen, Chuanfei Guo, Yucheng Lan,Zhifeng Ren,“Thermoelectric property enhancement in Yb-doped n-type skutterudites YbxCo4Sb12”, Acta Materialia, 75, 316–321(2014)
[82] A.U. Khan, N.V. Vlachos, E. Hatzikraniotis, G.S. Polymeris, Ch.B. Lioutas, E.C. Stefanaki, K.M. Paraskevopoulos, I. Giapintzakis, Th. Kyratsi, “Thermoelectric properties of highly efficient Bi-doped Mg2Si1-x-ySnxGey materials”, Acta Materialia, 77, 43–53(2014)
[83] E. Altenkirch, “Physikalische Zeitschrift”, 10, 560–580(1909)
[84] Paz Vaqueiro, Anthony V. Powell, “ Recent developments in nanostructured materials for high-performance thermoelectrics”, Journal of Materials Chemistry , 20, 9577-9584(2010)
[85] Zhi-Gang Chena, Guang Han, Lei Yang, Lina Cheng, Jin Zoua, “Nanostructured thermoelectric materials: Current research and future challenge”, Progress in Natural Science: Materials International, 20, 535-549(2012)
[86] A.J. Minnich, M.S. Dresselhaus, Z. F. Ren and G. Chen, “Bulk nanostructured thermoelectric materials: current research and future prospects”, Energy & Environmental Science, 2, 466-479(2009)
[87] H.S.Dow, M.W.Oh, B. S. Kim, S. D. Park, H. W. Lee, D. M. Wee,“First-Principles Calculations on Electronic Structure of PbTe” , International Conference on Thermoelectrics(ICT), 26th, 90 – 93(2007)
[88] Jing-Feng Li, Wei-Shu Liu, Li-Dong Zhao, Min Zhou, “High-performance nanostructured thermoelectric materials” , NPG Asia Mater., 2(4), 152-158(2010)
[89] Naoki Shutoh, Shinya Sakurada, “Thermoelectric properties of the Tix(Zr0.5Hf0.5)1-xNiSn half-Heusler compounds”, Journal of Alloys and Compounds, 389, 204-208(2005)
[90] Weishu Liu, Xiao Yan, Gang Chen, Zhifeng Ren, “Recent advances in thermoelectric nanocomposites”, Nano Energy, 1, 42-56(2012)
[91] Seong-Gon Kim, I.I.Mazin, D.J.Singh ,“First-principles study of Zn-Sb thermoelectrics” , Phys. Rev. B 57, 6199(1998)
[92] Kuo-Yu Wu, The Strategy of Overlay Error Control in Semiconductor Lithography, College of enginerring, National Ciao Tung University(2008)
[93] Wei-Shiang Wang. 2008. The Effect of Heat Sink on The Performance of Thermal electric Cooler. Taiwan: National Chiao Tung University.
[94] L. W. da Silva, “Fabrication and measured performance of a first-generation microthermoelectric cooler”, Journal of Microelectromechanical Systems, VOL. 14, NO.5, Oct(2005)
[95] M. Quirk, J. Serda, “Semiconductor Manufacturing Technology”, 978-986-7727-70-1, 2010
[96] Chen Yang. 2013. Study of Dielectric Property Enhancement with Perpendicular Magnetic Moment in Magnetic Complex Thin Film. Master Thesis. Taiwan: National Taiwan University, Department of Mechanical Engineering.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19353-
dc.description.abstract本論文以透過將微型熱電致冷元件三維化,預計以三維立體微米結構,增加單位面積的P-N Couple數,減少熱傳導率,進而有效提升熱電元件的整體效率。
整體熱電元件的製程規劃包含21項半導體製程,其中使用多達5到光罩設計,所有步驟均相容於現今半導體製程,此結構設計可以大幅幫助所製作出來的熱電元件的實用性以及與其他電子元件的相容性。本論文實驗中使用電漿輔助化學氣相沉積(Plasma Enhanced Chemical Vapor Deposition ; PECVD)成長850nm的SiO2絕緣層在矽晶圓表面,接續以上光阻(Coating Photoresis)、軟烤 (Soft Bake)、曝光(Exposure)、顯影(Development)等微影(Photoligraphy)製程定義後續所需之圖型,並使用直流磁控濺鍍系統(Magnetron Sputtering Deposition)沉積鈦(Ti)及鉑(Pt)的薄膜以製備下電極,厚度分別為40 / 200nm;使用射頻及直流磁控濺鍍系統分別沉積碲硒化鉍(Bi2.0Te2.7Se0.3)與碲銻化鉍(Bi0.4Te3.0Sb1.6)各1um以製備N極和P極熱電材料;最後再以直流磁控濺鍍系統沉積Ti / Pt薄膜以製備上電極,厚度分別為1500 / 500nm。
zh_TW
dc.description.abstractIn this thesis, we create the 3D microthermoelectric cooler, which has the 3D micro structure, to promote P-N couples on the unit area and reduce the thermal conductivity to improve efficiency of the device.
The whole process, including 21 steps of semiconductor manufacturing technology, has to use 5 masks, and Ti was compatible with all semiconductor manufacturing technology. This design will be helpful for the applicability of the device and the compatibility with other electrical devices. We used plasma enhanced chemical vapor deposition technique to provide electrical insulation for device. The 850nm silicon dioxide (SiO2) layer is grown on the Si wafer. Also, we used the photoligraphy process, including coating photoresis, soft bake, exposure and development, to definite the graph, and deposit the Ti/Pt thin film as the bottom of electrode by using DC magnetron sputtering deposition technique. The thickness of Ti and Pt layers are respectively 40nm and 200nm. Besides, we used RF and DC magnetron sputtering deposition technique to deposit 1um Bi2.0Te2.7Se0.3 and 1um Bi0.4Te3.0Sb1.6 as the N-type and P-type thermoelectric material. Finaly, DC magnetron sputtering deposition technique was used to deposit the Ti/Pt thin film as the top of electrode. The thickness of Ti and Pt layers are respectively 1500nm and 500nm.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:55:02Z (GMT). No. of bitstreams: 1
ntu-105-R03522626-1.pdf: 3518950 bytes, checksum: 0d4087d8eb1b3eb778b12fabd0d52e30 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員審定書...i
致謝...ii
中文摘要...iii
ABSTRACT...iv
總目錄...v
圖目錄...vii
表目錄...ix
Chapter 1 緒論...1
1.1 前言...1
1.2 研究背景與動機...2
Chapter 2 文獻回顧...4
2.1 熱電歷史...4
2.2 1996年~2011年熱電材料的發展...6
2.3 近年熱電材料發展現況...12
Chapter 3 基礎原理...15
3.1 熱電效應...15
3.1.1 Seebeck效應(Seebeck Effect)...15
3.1.2 Peltier效應(Peltier Effect)...17
3.1.3 Thomson效應(Thomson Effect)...19
3.2 熱電優值 (Thermoelectric Figure of Merit, ZT)...20
3.2.1 Seebeck係數和導電率之間的矛盾...21
3.2.2 熱傳導係數與導電率之間的矛盾...22
3.3 熱電轉換效率...23
3.3.1 熱電發電器(Thermoelectric Generator)...24
3.3.2 熱電致冷器(Thermoelectric Cooler)...25
3.4 熱電材料種類...25
3.4.1 碲化鉍(Bismuth Telluride)...26
3.4.2 碲化鉛(Lead Telluride)...27
3.4.3 矽鍺(Silicon Germanium)合金...28
3.4.4 方鈷礦(Skutterudite)...28
3.4.5 半赫斯勒(Half-Heusler)合金...29
3.4.6 Zn4Sb3合金...30
3.5 真空理論...31
3.6 電漿...31
3.7 薄膜成長機制...32
Chapter 4 實驗方法與步驟...35
4.1 三維微型熱電致冷元件結構設計...35
4.2 實驗流程設計...36
4.3 光罩設計...39
4.4 實驗設備...42
4.4.1 磁控濺鍍機(Sputter)...42
4.4.2 曝光機(Mask Aligner)...45
4.5 實驗步驟及製程參數...46
4.5.1 基板製備...48
4.5.2 下電極製備...50
4.5.3 鍍N極熱電材料...53
4.5.4 鍍P極熱電材料...55
4.5.5 上電極製備...57
Chapter 5 實驗結果與討論...60
REFERENCES...61
dc.language.isozh-TW
dc.title三維微型熱電致冷元件之研製zh_TW
dc.titleDevelopment of 3D Micorthermoelectric Cooleren
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳旻政(Min-Cheng Chen),李愷信(Kai-Shin Li),李敏鴻(Min-Hung Lee)
dc.subject.keyword熱電致冷元件,碲化鉍合金,席貝克效應,zh_TW
dc.subject.keywordMicorthermoelectric cooler,Bismuth-Telluride-based alloy,Seebeck Effect,en
dc.relation.page73
dc.identifier.doi10.6342/NTU201600590
dc.rights.note未授權
dc.date.accepted2016-07-12
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
3.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved