請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19067
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊家榮 | |
dc.contributor.author | Sheng-Jun Fan | en |
dc.contributor.author | 范盛軍 | zh_TW |
dc.date.accessioned | 2021-06-08T01:43:57Z | - |
dc.date.copyright | 2016-08-26 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-16 | |
dc.identifier.citation | 1. Solomon A, Mangialasche F, Richard E, Andrieu S, Bennett D A, et al. Advances in the prevention of Alzheimer's disease and dementia. J Intern Med. 2014;275:229-250.
2. Li X L, Hu N, Tan M S, Yu J T and Tan L. Behavioral and psychological symptoms in Alzheimer's disease. Biomed Res Int. 2014;2014:1-9. 3. Amemori T, Jendelova P, Ruzicka J, Urdzikova L M and Sykova E. Alzheimer's Disease: Mechanism and Approach to Cell Therapy. Int J Mol Sci. 2015;16:26417-26451. 4. Govindarajan N, Rao P, Burkhardt S, Sananbenesi F, Schluter O M, et al. Reducing HDAC6 ameliorates cognitive deficits in a mouse model for Alzheimer's disease. EMBO Mol Med. 2013;5:52-63. 5. Levenson J M and Sweatt J D. Epigenetic mechanisms in memory formation. Nat Rev Neurosci. 2005;6:108-118. 6. Falkenberg K J and Johnstone R W. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov. 2014;13:673-691. 7. Ricobaraza A, Cuadrado-Tejedor M, Perez-Mediavilla A, Frechilla D, Del Rio J and Garcia-Osta A. Phenylbutyrate ameliorates cognitive deficit and reduces tau pathology in an Alzheimer's disease mouse model. Neuropsychopharmacology. 2009;34:1721-1732. 8. Abel T and Zukin R S. Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Curr Opin Pharmacol. 2008;8:57-64. 9. Zhang L, Liu C, Wu J, Tao J J, Sui X L, et al. Tubastatin A/ACY-1215 improves cognition in Alzheimer's disease transgenic mice. J Alzheimers Dis. 2014;41:1193-1205. 10. Kopljar I, Gallacher D J, De Bondt A, Cougnaud L, Vlaminckx E, et al. Functional and Transcriptional Characterization of Histone Deacetylase Inhibitor-Mediated Cardiac Adverse Effects in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Stem Cells Transl Med. 2016;5:602-612. 11. Subramanian S, Bates S E, Wright J J, Espinoza-Delgado I and Piekarz R L. Clinical Toxicities of Histone Deacetylase Inhibitors. Pharmaceuticals. 2010;3:2751-2767. 12. Zhang L, Sheng S and Qin C. The role of HDAC6 in Alzheimer's disease. J Alzheimers Dis. 2013;33:283-295. 13. Ding H, Dolan P J and Johnson G V. Histone deacetylase 6 interacts with the microtubule-associated protein tau. J Neurochem. 2008;106:2119-2130. 14. O'Brien C. Auguste D. and Alzheimer's disease. Science. 1996;273:28. 15. Cook C, Gendron T F, Scheffel K, Carlomagno Y, Dunmore J, et al. Loss of HDAC6, a novel CHIP substrate, alleviates abnormal tau accumulation. Hum Mol Genet. 2012;21:2936-2945. 16. Selenica M L, Benner L, Housley S B, Manchec B, Lee D C, et al. Histone deacetylase 6 inhibition improves memory and reduces total tau levels in a mouse model of tau deposition. Alzheimers Res Ther. 2014;6:1-12. 17. Wilson R S, Segawa E, Boyle P A, Anagnos S E, Hizel L P and Bennett D A. The natural history of cognitive decline in Alzheimer's disease. Psychol Aging. 2012;27:1008-1017. 18. Burns A and Iliffe S. Alzheimer's disease. Bmj. 2009;338:158. 19. Scheltens P, Blennow K, Breteler M M, Strooper B, Frisoni G B, et al. Alzheimer's disease. Lancet. 2016. 20. Lambert M A, Bickel H, Prince M, Fratiglioni L, Von Strauss E, et al. Estimating the burden of early onset dementia; systematic review of disease prevalence. Eur J Neurol. 2014;21:563-569. 21. Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W and Ferri C P. The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers Dement. 2013;9:63-75. 22. U.S. Alzheimer’s Association. 2015 Alzheimer's disease facts and figures. Alzheimers Dement. 2015;11:332-384. 23. Sinha R N. Make dementia a public health priority in India. Indian J Public Health. 2011;55:67-69. 24. Qiu C, Kivipelto M, Aguero-Torres H, Winblad B and Fratiglioni L. Risk and protective effects of the APOE gene towards Alzheimer's disease in the Kungsholmen project: variation by age and sex. J Neurol Neurosurg Psychiatry. 2004;75:828-833. 25. Von Arnim C A, Gola U and Biesalski H K. More than the sum of its parts? Nutrition in Alzheimer's disease. Nutrition. 2010;26:694-700. 26. Rusanen M, Kivipelto M, Quesenberry C P, Zhou J and Whitmer R A. Heavy smoking in midlife and long-term risk of Alzheimer disease and vascular dementia. Arch Intern Med. 2011;171:333-339. 27. Debette S, Seshadri S, Beiser A, Au R, Himali J J, et al. Midlife vascular risk factor exposure accelerates structural brain aging and cognitive decline. Neurology. 2011;77:461-468. 28. Stern Y. Cognitive reserve in ageing and Alzheimer's disease. Lancet Neurol. 2012;11:1006-1012. 29. Garay R P, Citrome L, Grossberg G T, Cavero I and Llorca P M. Investigational drugs for treating agitation in persons with dementia. Expert Opin Investig Drugs. 2016:1-39. 30. Hachisu M, Konishi K, Hosoi M, Tani M, Tomioka H, et al. Beyond the Hypothesis of Serum Anticholinergic Activity in Alzheimer's Disease: Acetylcholine Neuronal Activity Modulates Brain-Derived Neurotrophic Factor Production and Inflammation in the Brain. Neurodegener Dis. 2015;15:182-187. 31. Kolisnyk B, Al-Onaizi M, Soreq L, Barbash S, Bekenstein U, et al. Cholinergic Surveillance over Hippocampal RNA Metabolism and Alzheimer's-Like Pathology. Cereb Cortex. 2016:1-15. 32. Babic T. The cholinergic hypothesis of Alzheimer's disease: a review of progress. J Neurol Neurosurg Psychiatry. 1999;67:558. 33. Rosales-Corral S A, Acuna-Castroviejo D, Coto-Montes A, Boga J A, Manchester L C, et al. Alzheimer's disease: pathological mechanisms and the beneficial role of melatonin. J Pineal Res. 2012;52:167-202. 34. Yu J T, Chang R C and Tan L. Calcium dysregulation in Alzheimer's disease: from mechanisms to therapeutic opportunities. Prog Neurobiol. 2009;89:240-255. 35. Sonkusare S K, Kaul C L and Ramarao P. Dementia of Alzheimer's disease and other neurodegenerative disorders-memantine, a new hope. Pharmacol Res. 2005;51:1-17. 36. Wallace J. Calcium dysregulation, and lithium treatment to forestall Alzheimer's disease - a merging of hypotheses. Cell Calcium. 2014;55:175-181. 37. Wollen K A. Alzheimer's disease: the pros and cons of pharmaceutical, nutritional, botanical, and stimulatory therapies, with a discussion of treatment strategies from the perspective of patients and practitioners. Altern Med Rev. 2010;15:223-244. 38. Hardy J. The amyloid hypothesis for Alzheimer's disease: a critical reappraisal. J Neurochem. 2009;110:1129-1134. 39. Walsh D M, Klyubin I, Fadeeva J V, Cullen W K, Anwyl R, et al. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature. 2002;416:535-539. 40. Haass C, Hung A Y and Selkoe D J. Processing of beta-amyloid precursor protein in microglia and astrocytes favors an internal localization over constitutive secretion. J Neurosci. 1991;11:3783-3793. 41. Klevanski M, Herrmann U, Weyer S W, Fol R, Cartier N, et al. The APP Intracellular Domain Is Required for Normal Synaptic Morphology, Synaptic Plasticity, and Hippocampus-Dependent Behavior. J Neurosci. 2015;35:16018-16033. 42. O'Brien R J and Wong P C. Amyloid precursor protein processing and Alzheimer's disease. Annu Rev Neurosci. 2011;34:185-204. 43. Fedele E, Rivera D, Marengo B, Pronzato M A and Ricciarelli R. Amyloid beta: Walking on the dark side of the moon. Mech Ageing Dev. 2015;152:1-4. 44. Landreh M, Sawaya M R, Hipp M S, Eisenberg D S, Wuthrich K and Hartl F U. The formation, function and regulation of amyloids: insights from structural biology. J Intern Med. 2016;1-13. 45. Roychaudhuri R, Yang M, Hoshi M M and Teplow D B. Amyloid beta-protein assembly and Alzheimer disease. J Biol Chem. 2009;284:4749-4753. 46. Rapoport M, Dawson H N, Binder L I, Vitek M P and Ferreira A. Tau is essential to beta -amyloid-induced neurotoxicity. Proc Natl Acad Sci U S A. 2002;99:6364-6369. 47. Beglopoulos V, Tulloch J, Roe A D, Daumas S, Ferrington L, et al. Early detection of cryptic memory and glucose uptake deficits in pre-pathological APP mice. Nat Commun. 2016;7:1-10. 48. Pearson H A and Peers C. Physiological roles for amyloid beta peptides. J Physiol. 2006;575:5-10. 49. Doody R S, Thomas R G, Farlow M, Iwatsubo T, Vellas B, et al. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer's disease. N Engl J Med. 2014;370:311-321. 50. Salloway S, Sperling R, Fox N C, Blennow K, Klunk W, et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer's disease. N Engl J Med. 2014;370:322-333. 51. Kepp K P. Alzheimer's disease due to loss of function: A new synthesis of the available data. Prog Neurobiol. 2016:1-25. 52. Shin R W, Iwaki T, Kitamoto T and Tateishi J. Hydrated autoclave pretreatment enhances tau immunoreactivity in formalin-fixed normal and Alzheimer's disease brain tissues. Lab Invest. 1991;64:693-702. 53. Goedert M, Wischik C M, Crowther R A, Walker J E and Klug A. Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc Natl Acad Sci U S A. 1988;85:4051-4055. 54. Holtzman D M, Carrillo M C, Hendrix J A, Bain L J, Catafau A M, et al. Tau: From research to clinical development. Alzheimers Dement. 2016;1-7. 55. Kolarova M, Garcia-Sierra F, Bartos A, Ricny J and Ripova D. Structure and pathology of tau protein in Alzheimer disease. Int J Alzheimers Dis. 2012;2012:1-13. 56. Hanger D P, Anderton B H and Noble W. Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol Med. 2009;15:112-119. 57. Gotz J. Tau and transgenic animal models. Brain Res Brain Res Rev. 2001;35:266-286. 58. Alonso A, Zaidi T, Novak M, Grundke I and Iqbal K. Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments. Proc Natl Acad Sci U S A. 2001;98:6923-6928. 59. Min S W, Cho S H, Zhou Y, Schroeder S, Haroutunian V, et al. Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron. 2010;67:953-966. 60. Trojanowski J Q and Lee V M. Phosphorylation of paired helical filament tau in Alzheimer's disease neurofibrillary lesions: focusing on phosphatases. Faseb j. 1995;9:1570-1576. 61. Li T and Paudel H K. Glycogen synthase kinase 3 beta phosphorylates Alzheimer's disease-specific Ser396 of microtubule-associated protein tau by a sequential mechanism. Biochemistry. 2006;45:3125-3133. 62. Maqbool M, Mobashir M and Hoda N. Pivotal role of glycogen synthase kinase-3 : A therapeutic target for Alzheimer's disease. Eur J Med Chem. 2016;107:63-81. 63. Liu F, Zaidi T, Iqbal K, Grundke-Iqbal I, Merkle R K and Gong C X. Role of glycosylation in hyperphosphorylation of tau in Alzheimer's disease. FEBS Lett. 2002;512:101-106. 64. Gotz J and Ittner L M. Animal models of Alzheimer's disease and frontotemporal dementia. Nat Rev Neurosci. 2008;9:532-544. 65. Bibow S, Ozenne V, Biernat J, Blackledge M, Mandelkow E and Zweckstetter M. Structural impact of proline-directed pseudophosphorylation at AT8, AT100, and PHF1 epitopes on 441-residue tau. J Am Chem Soc. 2011;133:15842-15845. 66. Tenreiro S, Eckermann K and Outeiro T F. Protein phosphorylation in neurodegeneration: friend or foe? Front Mol Neurosci. 2014;7:1-30. 67. Corbett A, Smith J and Ballard C. New and emerging treatments for Alzheimer's disease. Expert Rev Neurother. 2012;12:535-543. 68. Bezprozvanny I. The rise and fall of Dimebon. Drug News Perspect. 2010;23:518-523. 69. Farlow M, Arnold S E, van Dyck C H, Aisen P S, Snider B J, et al. Safety and biomarker effects of solanezumab in patients with Alzheimer's disease. Alzheimers Dement. 2012;8:261-271. 70. Sala Frigerio C and De Strooper B. Alzheimer's Disease Mechanisms and Emerging Roads to Novel Therapeutics. Annu Rev Neurosci. 2016;39:57-79. 71. Khorasanizadeh S. The nucleosome: from genomic organization to genomic regulation. Cell. 2004;116:259-272. 72. Dekker F J and Haisma H J. Histone acetyl transferases as emerging drug targets. Drug Discov Today. 2009;14:942-948. 73. Sun J M, Spencer V A, Chen H Y, Li L and Davie J R. Measurement of histone acetyltransferase and histone deacetylase activities and kinetics of histone acetylation. Methods. 2003;31:12-23. 74. Kim H J and Bae S C. Histone deacetylase inhibitors: molecular mechanisms of action and clinical trials as anti-cancer drugs. Am J Transl Res. 2011;3:166-179. 75. Gregoretti I V, Lee Y M and Goodson H V. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol. 2004;338:17-31. 76. Haigis M C and Guarente L P. Mammalian sirtuins-emerging roles in physiology, aging, and calorie restriction. Genes Dev. 2006;20:2913-2921. 77. Li Y, Shin D, and Kwon S H. Histone deacetylase 6 plays a role as a distinct regulator of diverse cellular processes. FEBS J. 2013;280:775-793. 78. Huang Y C, Huang F I, Mehndiratta S, Lai S C, Liou J P and Yang C R. Anticancer activity of MPT0G157, a derivative of indolylbenzenesulfonamide, inhibits tumor growth and angiogenesis. Oncotarget. 2015;6:18590-18601. 79. Valenzuela-Fernandez A, Cabrero J R, Serrador J M and Sanchez-Madrid F. HDAC6: a key regulator of cytoskeleton, cell migration and cell-cell interactions. Trends Cell Biol. 2008;18:291-297. 80. Dallavalle S, Pisano C and Zunino F. Development and therapeutic impact of HDAC6-selective inhibitors. Biochem Pharmacol. 2012;84:756-765. 81. Zhang Y, Kwon S, Yamaguchi T, Cubizolles F, Rousseaux S, et al. Mice lacking histone deacetylase 6 have hyperacetylated tubulin but are viable and develop normally. Mol Cell Biol. 2008;28:1688-1701. 82. Perez M, Santa-Maria I, Gomez de Barreda E, Zhu X, Cuadros R, et al. Tau - an inhibitor of deacetylase HDAC6 function. J Neurochem. 2009;109:1756-1766. 83. Chen S, Owens G C, Makarenkova H and Edelman D B. HDAC6 regulates mitochondrial transport in hippocampal neurons. PLoS One. 2010;5:1-11. 84. Dompierre J P, Godin J D, Charrin B C, Cordelieres F P, King S J, et al. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington's disease by increasing tubulin acetylation. J Neurosci. 2007;27:3571-3583. 85. Yoon S and Eom G H. HDAC and HDAC Inhibitor: From Cancer to Cardiovascular Diseases. Chonnam Med J. 2016;52:1-11. 86. Witt O, Deubzer H E, Milde T and Oehme I. HDAC family: What are the cancer relevant targets? Cancer Lett. 2009;277:8-21. 87. Finley D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem. 2009;78:477-513. 88. Vilchez D, Saez I and Dillin A. The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat Commun. 2014;5:1-13. 89. Dickey C A, Kamal A, Lundgren K, Klosak N, Bailey R M, et al. The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. J Clin Invest. 2007;117:648-658. 90. Dickey C A, Koren J, Zhang Y J, Xu Y F, Jinwal U K, et al. Akt and CHIP coregulate tau degradation through coordinated interactions. Proc Natl Acad Sci U S A. 2008;105:3622-3627. 91. Murphy P J, Morishima Y, Kovacs J J, Yao T P and Pratt W B. Regulation of the dynamics of hsp90 action on the glucocorticoid receptor by acetylation/deacetylation of the chaperone. J Biol Chem. 2005;280:33792-33799. 92. Santo L, Hideshima T, Kung A L, Tseng J C, Tamang D, et al. Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma. Blood. 2012;119:2579-2589. 93. DeTure M, Ko L W, Easson C and Yen S H. Tau assembly in inducible transfectants expressing wild-type or FTDP-17 tau. Am J Pathol. 2002;161:1711-1722. 94. Yu C W, Chang P T, Hsin L W and Chern J W. Quinazolin-4-one derivatives as selective histone deacetylase-6 inhibitors for the treatment of Alzheimer's disease. J Med Chem. 2013;56:6775-6791. 95. Avila J, Pallas N, Bolos M, Sayas C L and Hernandez F. Intracellular and extracellular microtubule associated protein tau as a therapeutic target in Alzheimer disease and other tauopathies. Expert Opin Ther Targets. 2016;20:653-661. 96. Dou F, Netzer W J, Tanemura K, Li F, Hartl F U, et al. Chaperones increase association of tau protein with microtubules. Proc Natl Acad Sci U S A. 2003;100:721-726. 97. Guo J L, Buist A, Soares A, Callaerts K, Calafate S, et al. The Dynamics and Turnover of Tau Aggregates in Cultured Cells: Insights into Therapies for Tauopathies. J Biol Chem. 2016:1-29. 98. Hatakeyama S. Ubiquitylation as a Quality Control System for Intracellular Proteins. Journal of Biochemistry. 2003;134:1-8. 99. Cuesto G, Jordan-Alvarez S, Enriquez-Barreto L, Ferrus A, Morales M and Acebes A. GSK3 beta inhibition promotes synaptogenesis in Drosophila and mammalian neurons. PLoS One. 2015;10:1-24. 100. Hooper C, Killick R and Lovestone S. The GSK3 hypothesis of Alzheimer's disease. J Neurochem. 2008;104:1433-1439. 101. Chen C, Li X H, Zhang S, Tu Y, Wang Y M and Sun H T. 7,8-dihydroxyflavone ameliorates scopolamine-induced Alzheimer-like pathologic dysfunction. Rejuvenation Res. 2014;17:249-254. 102. Hu P, Li Z, Chen M, Sun Z, Ling Y, et al. Structural elucidation and protective role of a polysaccharide from Sargassum fusiforme on ameliorating learning and memory deficiencies in mice. Carbohydrate Polymers. 2016;139:150-158. 103. Manral A, Meena P, Saini V, Siraj F, Shalini S and Tiwari M. DADS Analogues Ameliorated the Cognitive Impairments of Alzheimer-Like Rat Model Induced by Scopolamine. Neurotox Res. 2016;1-20. 104. Zha X, Lamba D, Zhang L, Lou Y, Xu C, et al. Novel Tacrine-Benzofuran Hybrids as Potent Multitarget-Directed Ligands for the Treatment of Alzheimer's Disease: Design, Synthesis, Biological Evaluation, and X-ray Crystallography. J Med Chem. 2016;59:114-131. 105. Kilgore M, Miller C A, Fass D M, Hennig K M, Haggarty S J, et al. Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer's disease. Neuropsychopharmacology. 2010;35:870-880. 106. Cecarini V, Bonfili L, Cuccioloni M, Mozzicafreddo M, Rossi G, et al. Crosstalk between the ubiquitin-proteasome system and autophagy in a human cellular model of Alzheimer's disease. Biochim Biophys Acta. 2012;1822:1741-1751. 107. Aldana-Masangkay G I and Sakamoto K M. The role of HDAC6 in cancer. J Biomed Biotechnol. 2011;2011:1-10. 108. Rodrigues D A, Thota S and Fraga C A. Beyond the Selective Inhibition of Histone Deacetylase 6. Mini Rev Med Chem. 2016:1-10. 109. Jochems J, Boulden J, Lee B G, Blendy J A, Jarpe M, et al. Antidepressant-like properties of novel HDAC6-selective inhibitors with improved brain bioavailability. Neuropsychopharmacology. 2014;39:389-400. 110. Anandatheerthavarada H K, Biswas G, Robin M A and Avadhani N G. Mitochondrial targeting and a novel transmembrane arrest of Alzheimer's amyloid precursor protein impairs mitochondrial function in neuronal cells. J Cell Biol. 2003;161:41-54. 111. Lin N, Chen L M, Pan X D, Zhu Y G, Zhang J, et al. Tripchlorolide Attenuates beta-amyloid Generation via Suppressing PPARgamma-Regulated BACE1 Activity in N2a/APP695 Cells. Mol Neurobiol. 2015:1-10. 112. Devi L, Prabhu B M, Galati D F, Avadhani N G and Anandatheerthavarada H K. Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer's disease brain is associated with mitochondrial dysfunction. J Neurosci. 2006;26:9057-9068. 113. Goedert M. Tau gene mutations and their effects. Mov Disord. 2005;20:45-52. 114. Shamir D B, Rosenqvist N, Rasool S, Pedersen J T and Sigurdsson E M. Internalization of tau antibody and pathological tau protein detected with a flow cytometry multiplexing approach. Alzheimers Dement. 2016;1-10. 115. Goedert M, Satumtira S, Jakes R, Smith M J, Kamibayashi C, et al. Reduced binding of protein phosphatase 2A to tau protein with frontotemporal dementia and parkinsonism linked to chromosome 17 mutations. J Neurochem. 2000;75:2155-2162. 116. Jope R S and Johnson G V. The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci. 2004;29:95-102. 117. Jada Lewis, Eileen McGowan, Julia Rockwood, Heather Melrose, Parimala Nacharaju, et al. Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat Genet. 2000;25:402-405. 118. Wray S and Noble W. Linking amyloid and tau pathology in Alzheimer's disease: the role of membrane cholesterol in Abeta-mediated tau toxicity. J Neurosci. 2009;29:9665-9667. 119. Alonso Adel C, Mederlyova A, Novak M, Grundke-Iqbal I and Iqbal K. Promotion of hyperphosphorylation by frontotemporal dementia tau mutations. J Biol Chem. 2004;279:34873-34881. 120. Wang J Z, Gong C X, Zaidi T, Grundke-Iqbal I and Iqbal K. Dephosphorylation of Alzheimer paired helical filaments by protein phosphatase-2A and -2B. J Biol Chem. 1995;270:4854-4860. 121. Bramblett G T, Goedert M, Jakes R, Merrick S E, Trojanowski J Q, and Lee V M. Abnormal tau phosphorylation at Ser396 in Alzheimer's disease recapitulates development and contributes to reduced microtubule binding. Neuron. 1993;10:1089-1099. 122. Wang J Z, Grundke-Iqbal I and Iqbal K. Restoration of biological activity of Alzheimer abnormally phosphorylated tau by dephosphorylation with protein phosphatase-2A, -2B and -1. Brain Res Mol Brain Res. 1996;38:200-208. 123. Hu Y Y, He S S, Wang X, Duan Q H, Grundke-Iqbal I, et al. Levels of nonphosphorylated and phosphorylated tau in cerebrospinal fluid of Alzheimer's disease patients: an ultrasensitive bienzyme-substrate-recycle enzyme-linked immunosorbent assay. Am J Pathol. 2002;160:1269-1278. 124. Park S J, Jin M L, An H K, Kim K S, Ko M J, et al. Emodin induces neurite outgrowth through PI3K/Akt/GSK-3beta-mediated signaling pathways in Neuro2a cells. Neurosci Lett. 2015;588:101-107. 125. Salto R, Vilchez J D, Giron M D, Cabrera E, Campos N, et al. beta-Hydroxy-beta-Methylbutyrate (HMB) Promotes Neurite Outgrowth in Neuro2a Cells. PLoS One. 2015;10:1-13. 126. Kovalevich J and Langford D. Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods Mol Biol. 2013;1078:9-21. 127. Dickey C A, Dunmore J, Lu B, Wang J W, Lee W C, et al. HSP induction mediates selective clearance of tau phosphorylated at proline-directed Ser/Thr sites but not KXGS (MARK) sites. FASEB J. 2006;20:753-755. 128. Isaacs J S, Xu W and Neckers L. Heat shock protein 90 as a molecular target for cancer therapeutics. Cancer Cell. 2003;3:213-217. 129. Bali P, Pranpat M, Bradner J, Balasis M, Fiskus W, et al. Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J Biol Chem. 2005;280:26729-26734. 130. Gong C X and Iqbal K. Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease. Curr Med Chem. 2008;15:2321-2328. 131. Leroy K, Yilmaz Z and Brion J P. Increased level of active GSK-3beta in Alzheimer's disease and accumulation in argyrophilic grains and in neurones at different stages of neurofibrillary degeneration. Neuropathol Appl Neurobiol. 2007;33:43-55. 132. Ly P T, Wu Y, Zou H, Wang R, Zhou W, et al. Inhibition of GSK3beta-mediated BACE1 expression reduces Alzheimer-associated phenotypes. J Clin Invest. 2013;123:224-235. 133. Avrahami L, Farfara D, Shaham-Kol M, Vassar R, Frenkel D and Eldar-Finkelman H. Inhibition of glycogen synthase kinase-3 ameliorates beta-amyloid pathology and restores lysosomal acidification and mammalian target of rapamycin activity in the Alzheimer disease mouse model: in vivo and in vitro studies. J Biol Chem. 2013;288:1295-1306. 134. DaRocha-Souto B, Coma M, Perez-Nievas B G, Scotton T C, Siao M, et al. Activation of glycogen synthase kinase-3 beta mediates beta-amyloid induced neuritic damage in Alzheimer's disease. Neurobiol Dis. 2012;45:425-437. 135. Kremer A, Louis J V, Jaworski T and Van Leuven F. GSK3 and Alzheimer's Disease: Facts and Fiction. Front Mol Neurosci. 2011;4:1-10. 136. Ryder J, Su Y and Ni B. Akt/GSK3beta serine/threonine kinases: evidence for a signalling pathway mediated by familial Alzheimer's disease mutations. Cell Signal. 2004;16:187-200. 137. Wang Z, Leng Y, Wang J, Liao H M, Bergman J, et al. Tubastatin A, an HDAC6 inhibitor, alleviates stroke-induced brain infarction and functional deficits: potential roles of alpha-tubulin acetylation and FGF-21 up-regulation. Sci Rep. 2016;6:1-12. 138. Borgas D, Chambers E, Newton J, Ko J, Rivera S, et al. Cigarette Smoke Disrupted Lung Endothelial Barrier Integrity and Increased Susceptibility to Acute Lung Injury via Histone Deacetylase 6. Am J Respir Cell Mol Biol. 2016;54:683-696. 139. Kaliszczak M, Trousil S, Ali T and Aboagye E O. AKT activation controls cell survival in response to HDAC6 inhibition. Cell Death Dis. 2016;7:1-9. 140. Itoh J, Nabeshima T and Kameyama T. Utility of an elevated plus-maze for the evaluation of memory in mice: effects of nootropics, scopolamine and electroconvulsive shock. Psychopharmacology. 1990;101:27-33. 141. Dhingra D and Kumar V. Memory-enhancing activity of palmatine in mice using elevated plus maze and morris water maze. Adv Pharmacol Sci. 2012;2012:1-7. 142. Kapadia M, Xu J and Sakic B. The water maze paradigm in experimental studies of chronic cognitive disorders: Theory, protocols, analysis, and inference. Neurosci Biobehav Rev. 2016:1-84. 143. Janke C and Kneussel M. Tubulin post-translational modifications: encoding functions on the neuronal microtubule cytoskeleton. Trends Neurosci. 2010;33:362-372. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19067 | - |
dc.description.abstract | 實驗方法:本研究利用細胞轉染技術,將神經細胞株過量表達β-amyloid前身蛋白與易磷酸化之突變Tau蛋白,建立阿茲海默症模式神經細胞株,以螢光顯微鏡及西方點墨法建立及檢定轉染條件,同樣以西方點墨法觀察compound A在神經細胞株中抑制HDAC6酵素活性之能力及減少Tau蛋白磷酸化累積之情形;利用流式細胞儀觀察細胞週期變化;免疫沉澱法觀察compound A影響熱休克蛋白90與HDAC6蛋白結合程度、乙醯化HSP90累積量與磷酸化Tau蛋白與泛素結合之情形。在活體實驗中,利用腹腔注射scopolamine建立大鼠阿茲海默症大鼠模型,並藉由舉臂式十字迷宮、莫氏水迷宮及海馬迴之免疫組織化學染色確認神經保護及改善認知能力之效果。
實驗結果:在兩株不同的神經細胞株中,轉染後可顯著誘導出Tau蛋白在Ser396位置之磷酸化,compound A藉由抑制HDAC6活性,增加細胞內乙醯化α微管表現量,且與臨床二期HDAC6抑制劑 (Rocilinostat, ACY1215) 相比更為顯著。同時compound A也抑制HDAC6與HSP90的結合作用,促使HSP90乙醯化,進而與其下游Tau蛋白分離,失去保護的磷酸化Tau會經由蛋白酶體路徑被降解,藉由減少神經細胞內累積的磷酸化Tau蛋白堆積,達到神經保護功效。在動物實驗中口服給予compound A可增加海馬迴CA1區域之Ac-α-tubulin表現量,減少海馬迴中經由scopolamine誘導出的磷酸化Tau表現,並且改善AD模式大鼠的行為能力:舉臂式十字迷宮實驗中的記憶學習能力及莫氏水迷宮的空間認知能力,證實compound A有良好的神經保護功效。 結論:實驗結果顯示,compound A具有良好的神經保護效果,透過抑制HDAC6活性可以減少磷酸化Tau蛋白在神經細胞中的累積,抑制細胞細胞凋亡,在活體實驗中也有明顯改善AD模式大鼠記憶學習及空間認知能力,因此compound A是一個有潛力可以發展成為神經性疾病治療藥物的新型HDAC6抑制劑。 | zh_TW |
dc.description.abstract | Objective:Alzheimer’s disease (AD) is a neurodegenerative disorder and the most common cause of dementia. Pathological features of AD are senile plaques (SPs), comprised of aggregated Aβ and intracellular neurofibrillary tangles (NTFs) that consist of aggregated and hyperphosphorylated tau protein in the hippocampus of AD patients. Previous studies showed that HDAC6 was overexpressed in AD patient brain. Overexpressing intracellular HDAC6 induces the phosphorylated tau aggregate and cognitive deficits in neuron and AD rodent model. The aim of this study is to investigate the effect and mechanism of the novel HDAC6 inhibitor, compound A, on neuronal protection and cognitive function of AD rat model.
Methods:In this study, we overexpressed two kinds of plasmids, hAPP695 and hTauP301L, to establish the AD cell model and using the fluorescence microscope and western blot to examine the transfection effect. The inhibition effect of HDAC6 and the accumulation of phosphorylated tau protein were evaluated by western blot. Cell cycle was studied by flow cytometry. Immunoprecipitation was used to evaluate acetylation of heat shock protein 90 (HSP90), the interaction between HDAC6 and HSP90, and the ubiquitinated tau protein. We established the AD rat model by the scopolamine intraperitoneal injection. Morris water maze, elevated plus maze and immunohistochemistry stain (IHC) were used to determine the effect of neuronal protection and cognitive function of test compounds in AD rat model. Result:We overexpressed two kinds of plasmids, hAPP695 and hTauP301L, in neuron cells to induce the phosphorylated tau (Ser396). Comparing with ACY1215 (Rocilinostat), a HDAC6 inhibitor in phase II clinical trial, compound A significantly increased intracellular acetyl-α-tubulin level by inhibiting the activity of HDAC6 in the low dosage (0.1μM). In addition, compound A decreased the HDAC6/HSP90 binding and then increased HSP90 acetylation. The acetyl-HSP90 decrease the affinity of HSP90 and phosphorylated tau, leading to chaperone function impairment and phosphorylated tau degradation by proteasome pathway. Therefore, compound A show the neuron protective effect by reducing tau aggregates. In animal studies, compound A not only significantly improved the cognition in elevated plus maze and Morris water maze tests, but also ameliorated the pathological features in the animal brain. Conclusion:Our results demonstrate that compound A has potent neuron protective effect by inhibiting HDAC6 activity and down regulation phosphorylated tau aggregation, then reducing cell apoptosis. The in vivo results also shown compound A ameliorated cognitive deficits. Therefore, it suggests that compound A has a potential as a therapeutic ahent in AD treatment. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T01:43:57Z (GMT). No. of bitstreams: 1 ntu-105-R02423013-1.pdf: 10533213 bytes, checksum: 5bafb96f326aa2532eb8eeece9ac4e45 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 縮寫表 p.II
中文摘要 p.IV 英文摘要 p.VI 第一章 研究動機與目的 p.1 第二章 文獻回顧 p.3 第三章 實驗材料與方法 p.22 第四章 實驗結果 p.31 第五章 討論 p.39 第六章 結論與未來展望 p.47 參考文獻 p.67 | |
dc.language.iso | zh-TW | |
dc.title | 新型HDAC6抑制劑在神經保護及改善阿茲海默症模式大鼠認知能力之研究 | zh_TW |
dc.title | Ameliorates Cognitive Deficits in a Rat Model for Alzheimer's Disease | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 潘秀玲,劉景平 | |
dc.subject.keyword | 組蛋白去乙醯基?6,阿茲海默症,熱休克蛋白90,Tau蛋白,蛋白?體路徑, | zh_TW |
dc.subject.keyword | Histone deacetylase 6,HSP90,tau,proteasome, | en |
dc.relation.page | 82 | |
dc.identifier.doi | 10.6342/NTU201602514 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2016-08-17 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 藥學研究所 | zh_TW |
顯示於系所單位: | 藥學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 10.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。