請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18595
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 孫錦虹(Chin-Hung Sun) | |
dc.contributor.author | Jo-Yu Liao | en |
dc.contributor.author | 廖若妤 | zh_TW |
dc.date.accessioned | 2021-06-08T01:13:49Z | - |
dc.date.copyright | 2014-10-09 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-13 | |
dc.identifier.citation | Adam, R. D. (2001). Biology of Giardia lamblia. Clin Microbiol Rev, 14(3), 447-475.
Al Quobaili, F., & Montenarh, M. (2012). CK2 and the regulation of the carbohydrate metabolism. Metabolism, 61(11), 1512-1517. Ankarklev, J., Jerlstrom-Hultqvist, J., Ringqvist, E., Troell, K., & Svard, S. G. (2010). Behind the smile: cell biology and disease mechanisms of Giardia species. Nat Rev Microbiol, 8(6), 413-422. Aravind, L., Leipe, D. D., & Koonin, E. V. (1998). Toprim--a conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins. Nucleic Acids Res, 26(18), 4205-4213. Champoux, J. J. (2001). DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem, 70, 369-413. Changela, A., DiGate, R. J., & Mondragon, A. (2001). Crystal structure of a complex of a type IA DNA topoisomerase with a single-stranded DNA molecule. Nature, 411(6841), 1077-1081. Chen, S. H., Chan, N. L., & Hsieh, T. S. (2013). New mechanistic and functional insights into DNA topoisomerases. Annu Rev Biochem, 82, 139-170. Chen, S. H., Wu, C. H., Plank, J. L., & Hsieh, T. S. (2012). Essential functions of C terminus of Drosophila Topoisomerase IIIalpha in double holliday junction dissolution. J Biol Chem, 287(23), 19346-19353. Chu, W. K., & Hickson, I. D. (2009). RecQ helicases: multifunctional genome caretakers. Nat Rev Cancer, 9(9), 644-654. Corbett, K. D., & Berger, J. M. (2004). Structure, molecular mechanisms, and evolutionary relationships in DNA topoisomerases. Annu Rev Biophys Biomol Struct, 33, 95-118. DuPont, H. L. (2013). Giardia: both a harmless commensal and a devastating pathogen. J Clin Invest, 123(6), 2352-2354. Feng, Y., & Xiao, L. (2011). Zoonotic potential and molecular epidemiology of Giardia species and giardiasis. Clin Microbiol Rev, 24(1), 110-140. Forterre, P. (2006). DNA topoisomerase V: a new fold of mysterious origin. Trends Biotechnol, 24(6), 245-247. Forterre, P., Gribaldo, S., Gadelle, D., & Serre, M. C. (2007). Origin and evolution of DNA topoisomerases. Biochimie, 89(4), 427-446. Gallego, E., Alvarado, M., & Wasserman, M. (2007). Identification and expression of the protein ubiquitination system in Giardia intestinalis. Parasitol Res, 101(1), 1-7. Grishin, N. V. (2000). C-terminal domains of Escherichia coli topoisomerase I belong to the zinc-ribbon superfamily. J Mol Biol, 299(5), 1165-1177. Guerra, B., Siemer, S., Boldyreff, B., & Issinger, O. G. (1999). Protein kinase CK2: evidence for a protein kinase CK2beta subunit fraction, devoid of the catalytic CK2alpha subunit, in mouse brain and testicles. FEBS Lett, 462(3), 353-357. Hsieh, M. Y., Fan, J. R., Chang, H. W., Chen, H. C., Shen, T. L., Teng, S. C., et al. (2014). DNA topoisomerase III alpha regulates p53-mediated tumor suppression. Clin Cancer Res, 20(6), 1489-1501. Keister, D. B. (1983). Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Trans R Soc Trop Med Hyg, 77(4), 487-488. Kim, H. S., & Cross, G. A. (2010). TOPO3alpha influences antigenic variation by monitoring expression-site-associated VSG switching in Trypanosoma brucei. PLoS Pathog, 6(7), e1000992. Knippschild, U., Kruger, M., Richter, J., Xu, P., Garcia-Reyes, B., Peifer, C., et al. (2014). The CK1 Family: Contribution to Cellular Stress Response and Its Role in Carcinogenesis. Front Oncol, 4, 96. Li, W., & Wang, J. C. (1998). Mammalian DNA topoisomerase IIIalpha is essential in early embryogenesis. Proc Natl Acad Sci U S A, 95(3), 1010-1013. Li, Z., Mondragon, A., Hiasa, H., Marians, K. J., & DiGate, R. J. (2000). Identification of a unique domain essential for Escherichia coli DNA topoisomerase III-catalysed decatenation of replication intermediates. Mol Microbiol, 35(4), 888-895. Lin, B. C., Su, L. H., Weng, S. C., Pan, Y. J., Chan, N. L., Li, T. K., et al. (2013). DNA topoisomerase II is involved in regulation of cyst wall protein genes and differentiation in Giardia lamblia. PLoS Negl Trop Dis, 7(5), e2218. Liu, L. F., & Wang, J. C. (1987). Supercoiling of the DNA template during transcription. Proc Natl Acad Sci U S A, 84(20), 7024-7027. Lopez, A. B., Sener, K., Jarroll, E. L., & van Keulen, H. (2003). Transcription regulation is demonstrated for five key enzymes in Giardia intestinalis cyst wall polysaccharide biosynthesis. Mol Biochem Parasitol, 128(1), 51-57. Lopez, A. B., Sener, K., Trosien, J., Jarroll, E. L., & van Keulen, H. (2007). UDP-N-acetylglucosamine 4'-epimerase from the intestinal protozoan Giardia intestinalis lacks UDP-glucose 4'-epimerase activity. J Eukaryot Microbiol, 54(2), 154-160. Lujan, H. D., Mowatt, M. R., Conrad, J. T., Bowers, B., & Nash, T. E. (1995). Identification of a novel Giardia lamblia cyst wall protein with leucine-rich repeats. Implications for secretory granule formation and protein assembly into the cyst wall. J Biol Chem, 270(49), 29307-29313. Maftahi, M., Han, C. S., Langston, L. D., Hope, J. C., Zigouras, N., & Freyer, G. A. (1999). The top3(+) gene is essential in Schizosaccharomyces pombe and the lethality associated with its loss is caused by Rad12 helicase activity. Nucleic Acids Res, 27(24), 4715-4724. Mankouri, H. W., & Hickson, I. D. (2007). The RecQ helicase-topoisomerase III-Rmi1 complex: a DNA structure-specific 'dissolvasome'? Trends Biochem Sci, 32(12), 538-546. Manthei, K. A., & Keck, J. L. (2013). The BLM dissolvasome in DNA replication and repair. Cell Mol Life Sci, 70(21), 4067-4084. Monnich, M., Hess, I., Wiest, W., Bachrati, C., Hickson, I. D., Schorpp, M., et al. (2010). Developing T lymphocytes are uniquely sensitive to a lack of topoisomerase III alpha. Eur J Immunol, 40(9), 2379-2384. Mowatt, M. R., Lujan, H. D., Cotten, D. B., Bowers, B., Yee, J., Nash, T. E., et al. (1995). Developmentally regulated expression of a Giardia lamblia cyst wall protein gene. Mol Microbiol, 15(5), 955-963. Mullen, J. R., Nallaseth, F. S., Lan, Y. Q., Slagle, C. E., & Brill, S. J. (2005). Yeast Rmi1/Nce4 controls genome stability as a subunit of the Sgs1-Top3 complex. Mol Cell Biol, 25(11), 4476-4487. Nash, T. E. (2002). Surface antigenic variation in Giardia lamblia. Mol Microbiol, 45(3), 585-590. Pan, Y. J., Cho, C. C., Kao, Y. Y., & Sun, C. H. (2009). A novel WRKY-like protein involved in transcriptional activation of cyst wall protein genes in Giardia lamblia. J Biol Chem, 284(27), 17975-17988. Postow, L., Crisona, N. J., Peter, B. J., Hardy, C. D., & Cozzarelli, N. R. (2001). Topological challenges to DNA replication: conformations at the fork. Proc Natl Acad Sci U S A, 98(15), 8219-8226. Savioli, L., Smith, H., & Thompson, A. (2006). Giardia and Cryptosporidium join the 'Neglected Diseases Initiative'. Trends Parasitol, 22(5), 203-208. Singer, S. M., Yee, J., & Nash, T. E. (1998). Episomal and integrated maintenance of foreign DNA in Giardia lamblia. Mol Biochem Parasitol, 92(1), 59-69. Stewart, L., Redinbo, M. R., Qiu, X., Hol, W. G., & Champoux, J. J. (1998). A model for the mechanism of human topoisomerase I. Science, 279(5356), 1534-1541. Su, L. H., Pan, Y. J., Huang, Y. C., Cho, C. C., Chen, C. W., Huang, S. W., et al. (2011). A novel E2F-like protein involved in transcriptional activation of cyst wall protein genes in Giardia lamblia. J Biol Chem, 286(39), 34101-34120. Sun, C. H., McCaffery, J. M., Reiner, D. S., & Gillin, F. D. (2003). Mining the Giardia lamblia genome for new cyst wall proteins. J Biol Chem, 278(24), 21701-21708. Sun, C. H., Palm, D., McArthur, A. G., Svard, S. G., & Gillin, F. D. (2002). A novel Myb-related protein involved in transcriptional activation of encystation genes in Giardia lamblia. Mol Microbiol, 46(4), 971-984. Sun, C. H., Su, L. H., & Gillin, F. D. (2006). Novel plant-GARP-like transcription factors in Giardia lamblia. Mol Biochem Parasitol, 146(1), 45-57. Suski, C., & Marians, K. J. (2008). Resolution of converging replication forks by RecQ and topoisomerase III. Mol Cell, 30(6), 779-789. Temime-Smaali, N., Guittat, L., Wenner, T., Bayart, E., Douarre, C., Gomez, D., et al. (2008). Topoisomerase IIIalpha is required for normal proliferation and telomere stability in alternative lengthening of telomeres. EMBO J, 27(10), 1513-1524. Viard, T., & de la Tour, C. B. (2007). Type IA topoisomerases: a simple puzzle? Biochimie, 89(4), 456-467. Wallis, J. W., Chrebet, G., Brodsky, G., Rolfe, M., & Rothstein, R. (1989). A hyper-recombination mutation in S. cerevisiae identifies a novel eukaryotic topoisomerase. Cell, 58(2), 409-419. Wang, C. H., Su, L. H., & Sun, C. H. (2007). A novel ARID/Bright-like protein involved in transcriptional activation of cyst wall protein 1 gene in Giardia lamblia. J Biol Chem, 282(12), 8905-8914. Wang, J. C. (1996). DNA topoisomerases. Annu Rev Biochem, 65, 635-692. Wang, J. C. (2002). Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol, 3(6), 430-440. Wu, J., Feng, L., & Hsieh, T. S. (2010). Drosophila topo IIIalpha is required for the maintenance of mitochondrial genome and male germ-line stem cells. Proc Natl Acad Sci U S A, 107(14), 6228-6233. Wu, L., & Hickson, I. D. (2003). The Bloom's syndrome helicase suppresses crossing over during homologous recombination. Nature, 426(6968), 870-874. Yin, J., Sobeck, A., Xu, C., Meetei, A. R., Hoatlin, M., Li, L., et al. (2005). BLAP75, an essential component of Bloom's syndrome protein complexes that maintain genome integrity. EMBO J, 24(7), 1465-1476. Zhang, H. L., Malpure, S., Li, Z., Hiasa, H., & DiGate, R. J. (1996). The role of the carboxyl-terminal amino acid residues in Escherichia coli DNA topoisomerase III-mediated catalysis. J Biol Chem, 271(15), 9039-9045. Zhu, C. X., & Tse-Dinh, Y. C. (2000). The acidic triad conserved in type IA DNA topoisomerases is required for binding of Mg(II) and subsequent conformational change. J Biol Chem, 275(8), 5318-5322. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18595 | - |
dc.description.abstract | 梨形鞭毛蟲屬於人畜共通的單細胞真核寄生蟲,造成的疾病為giardiasis,他會造成腹瀉、腹痛,嚴重時可能會導致營養吸收不良的情況,梨形鞭毛蟲主要分成兩個型態-滋養體和囊體,在宿主體內的時候主要是以滋養體的型態寄生,也是造成giardiasis病徵的原因,當梨形鞭毛蟲經由宿主腸道排出體外後會以囊體的型態在外界生存,不管是在滋養體的雙核或是囊體的四核,對於有關於梨形鞭毛蟲的遺傳物質的任何機轉都是需要精細且準確地進行,當遺傳物質DNA在進行像是複製、轉錄、重組、染色體的濃縮或分離時會造成拓樸學結構上的問題,因此會需要特殊的蛋白質-拓樸異構酶來幫助遺傳物質解決結構上問題。我們經由序列的分析比對找出梨形鞭毛蟲中屬於topoisomerase type IA的topoisomerase Ⅲalpha(gTOP3 | zh_TW |
dc.description.abstract | Giardiasis is a common disease caused by Giardia lamblia. The symptoms of giardiasis included diarrhoea, abdominal pain, weight loss, and malabsorption. Giardia has two major types: trophzoite and cyst. In trophzoite form, it’s can parasitize in the host’s instestinal epithelium and cause giardiasis. Cysts form of G. lamblia are passed in the faeces and protect Giardia against the environment. Both trophozoite with two nuclei or cyst with four tetraploid nuclei all need to proceed accuratent mechanism for DNA. When DNA is carrying out replication, transcription, recombination, chromosome compaction and segregation, some topological problems would occur these processes would result some topological problems. Therefore, topoisomerases can be applied to solve these construction problems to ensure DNA is normal.
We have analyzed the G. lamblia genome and found topoisomerase Ⅲalpha(gTOP3 | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T01:13:49Z (GMT). No. of bitstreams: 1 ntu-103-R01445206-1.pdf: 3296665 bytes, checksum: 2bf9dd9c560fd07a233d0988f2eaea8b (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iii abstract iv 目錄 vi 第一章 前言 1 1.1 梨形鞭毛蟲簡介 1 1.2 DNA topoisomerase 2 1.3 Topoisomerase Type IA 3 1.4 研究動機 5 第二章 材料與方法 6 2.1 梨形鞭毛蟲的細胞株培養(G. lamblia Cuture) 6 2.2 轉殖質體的建構(Plasmid Construction) 6 2.2.1 5’∆5N-pac 6 2.2.2 pPgTOP3a 6 2.2.3 pPgTOP3a m1 7 2.2.4 pPgTOP3a m2 8 2.2.5 pPgTOP3a m3 8 2.3 轉殖質體的轉型與萃取 9 2.3.1 質體的轉型(transformation) 9 2.3.2 質體的萃取(plasmid preparation) 9 2.4 梨形鞭毛蟲的轉染與選殖(Transfection and Selection) 9 2.5 重組蛋白質gTOP3a及突變gTOP3a表現載體建構 10 2.5.1 重組gTOP3a蛋白質的表現載體建構 10 2.5.2 重組gTOP3a m1蛋白質的表現載體建構 10 2.5.3 重組gTOP3a m2蛋白質的表現載體建構 11 2.5.4 重組gTOP3a m3蛋白質的表現載體建構 11 2.6 重組蛋白質的表現與純化 11 2.7 反轉錄聚合酶鍊式反應(Semi-quantitative RT-PCR Analysis,RT-PCR) 12 2.8 及時定量反轉錄聚合酶鍊式反應(Quantitative real-time polymerase chain reaction,Q-PCR) 12 2.9 西方點墨法(Western Blot Analysis)與Coomassie Blue染色 13 2.9.1 TCA蛋白質沉澱(TCA protein precipitation) 13 2.9.2 西方點墨法(Western Blot Analysis) 14 2.9.3 Coomassie Blue染色 14 2.10免疫螢光染色(Immunofluorescence Assay) 15 2.11 切割DNA活性分析(DNA Cleavage Assays) 15 2.11.1負超螺旋DNA切割活性分析 15 2.12囊體計數(Cyst Count) 15 第三章 實驗結果 17 3.1 分析梨形鞭毛蟲topoisomeraseⅢa(gTOP3a)胺基酸序列 17 3.2 梨形鞭毛蟲之gTOP3a基因在不同時期的表現量 18 3.3 梨形鞭毛蟲之gTOP3a對於DNA的切割能力 19 3.4 梨形鞭毛蟲之gTOP3a蛋白質可抑制囊體壁蛋白cwp1的表現量。 19 3.5 梨形鞭毛蟲之gTOP3a蛋白質對於其他基因的RNA表現量之影響。 19 3.6 建立gTOP3a的突變細胞來分析gTOP3a的活性區域。 20 第四章 討論 22 4.1 gTOP3a在不同時期表現量 22 4.2 gTOP3a的活性區分析 22 4.3 gTOP3a影響囊體壁蛋白cwp1的表現。 23 4.4 gTOP3a影響VSP的表現量。 24 4.5 gTOP3a對於Casein kinases基因之表現量 24 4.6 梨形鞭毛蟲gTOP3a基因啟動子區域不具有調控囊體化相關基因的轉錄因子之結合位。 25 4.7 gTOP3a與其他蛋白之交互作用 25 附圖 26 附表 45 參考資料 50 | |
dc.language.iso | zh-TW | |
dc.title | 梨形鞭毛蟲拓樸異構酶Ⅲalpha對於囊體壁基因的表現之影響 | zh_TW |
dc.title | The effect of topoisomerase Ⅲalpha on the cyst wall gene expression of Giardia lamblia | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李財坤(Tsai-Kun Li),詹迺立(Nei-Li, Chan) | |
dc.subject.keyword | 梨形鞭毛蟲,囊體化,拓樸異構?,cyst wall protein(cwp),myb2, | zh_TW |
dc.subject.keyword | Giardia lamblia,Encystation,topoisomerases,cyst wall protein(cwp),myb2, | en |
dc.relation.page | 53 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2014-08-14 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 微生物學研究所 | zh_TW |
顯示於系所單位: | 微生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 3.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。